
Two's Complement
Thomas Finley, April 2000

Contents and Introduction
Contents and Introduction
Conversion from Two's Complement
Conversion to Two's Complement
Arithmetic with Two's Complement
Why Inversion and Adding One Works

Two's complement is not a complicated scheme and is not well served by anything lengthly. Therefore,
after this introduction, which explains what two's complement is and how to use it, there are mostly
examples.

Two's complement is the way every computer I know of chooses to represent integers. To get the two's
complement negative notation of an integer, you write out the number in binary. You then invert the
digits, and add one to the result.

Suppose we're working with 8 bit quantities (for simplicity's sake) and suppose we want to find how
-28 would be expressed in two's complement notation. First we write out 28 in binary form.

0 0 0 1 1 1 0 0

Then we invert the digits. 0 becomes 1, 1 becomes 0.

1 1 1 0 0 0 1 1

Then we add 1.

1 1 1 0 0 1 0 0

That is how one would write -28 in 8 bit binary.

Conversion from Two's Complement
Use the number 0xFFFFFFFF as an example. In binary, that is:

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

What can we say about this number? It's first (leftmost) bit is 1, which means that this represents a
number that is negative. That's just the way that things are in two's complement: a leading 1 means
the number is negative, a leading 0 means the number is 0 or positive.

To see what this number is a negative of, we reverse the sign of this number. But how to do that? The
class notes say (on 3.17) that to reverse the sign you simply invert the bits (0 goes to 1, and 1 to 0)
and add one to the resulting number.

The inversion of that binary number is, obviously:

3/22/25, 3:00 PM Two's Complement

https://www.cs.cornell.edu/~tomf/notes/cps104/twoscomp.html 1/6

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Then we add one.

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

So the negative of 0xFFFFFFFF is 0x00000001, more commonly known as 1. So 0xFFFFFFFF is -1.

Conversion to Two's Complement
Note that this works both ways. If you have -30, and want to represent it in 2's complement, you take
the binary representation of 30:

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0

Invert the digits.

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 1

And add one.

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 0

Converted back into hex, this is 0xFFFFFFE2. And indeed, suppose you have this code:

#include <stdio.h>

int main() {
 int myInt;
 myInt = 0xFFFFFFE2;
 printf("%d\n",myInt);

 return 0;
}

That should yield an output of -30. Try it out if you like.

Arithmetic with Two's Complement
One of the nice properties of two's complement is that addition and subtraction is made very simple.
With a system like two's complement, the circuitry for addition and subtraction can be unified, whereas
otherwise they would have to be treated as separate operations.

In the examples in this section, I do addition and subtraction in two's complement, but you'll notice that
every time I do actual operations with binary numbers I am always adding.

Example 1

Suppose we want to add two numbers 69 and 12 together. If we're to use decimal, we see the sum is
81. But let's use binary instead, since that's what the computer uses.

1 1 Carry Row
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 (69)
+ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 (12)

3/22/25, 3:00 PM Two's Complement

https://www.cs.cornell.edu/~tomf/notes/cps104/twoscomp.html 2/6

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 1 (81)

Example 2

Now suppose we want to subtract 12 from 69. Now, 69 - 12 = 69 + (-12). To get the negative of 12 we
take its binary representation, invert, and add one.

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0

Invert the digits.

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1

And add one.

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 0

The last is the binary representation for -12. As before, we'll add the two numbers together.

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 Carry Row
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 (69)
+ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 0 (-12)

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 (57)

We result in 57, which is 69-12.

Example 3

Lastly, we'll subtract 69 from 12. Similar to our operation in example 2, 12 - 69 = 12 + (- 69). The two's
complement representation of 69 is the following. I assume you've had enough illustrations of inverting
and adding one.

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 0 1 1

So we add this number to 12.

1 1 1 Carry Row
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 (12)
+ 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 0 1 1 (-69)

 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 1 1 (-57)

This results in 12 - 69 = -57, which is correct.

Why Inversion and Adding One Works
Invert and add one. Invert and add one. It works, and you may want to know why. If you don't care,
skip this, as it is hardly essential. This is only intended for those curious as to why that rather strange
technique actually makes mathematical sense.

3/22/25, 3:00 PM Two's Complement

https://www.cs.cornell.edu/~tomf/notes/cps104/twoscomp.html 3/6

Inverting and adding one might sound like a stupid thing to do, but it's actually just a mathematical
shortcut of a rather straightforward computation.

Borrowing and Subtraction

Remember the old trick we learned in first grade of "borrowing one's" from future ten's places to
perform a subtraction? You may not, so I'll go over it. As an example, I'll do 93702 minus 58358.

 93702
- 58358

Now, then, what's the answer to this computation? We'll start at the least significant digit, and subtract
term by term. We can't subtract 8 from 2, so we'll borrow a digit from the next most significant place
(the tens place) to make it 12 minus 8. 12 minus 8 is 4, and we note a 1 digit above the ten's column
to signify that we must remember to subtract by one on the next iteration.

 1
 93702
- 58358

 4

This next iteration is 0 minus 5, and minus 1, or 0 minus 6. Again, we can't do 0 minus 6, so we borrow
from the next most significant figure once more to make that 10 minus 6, which is 4.

 11
 93702
- 58358

 44

This next iteration is 7 minus 3, and minus 1, or 7 minus 4. This is 3. We don't have to borrow this
time.

 11
 93702
- 58358

 344

This next iteration is 3 minus 8. Again, we must borrow to make thi 13 minus 8, or 5.

 1 11
 93702
- 58358

 5344

This next iteration is 9 minus 5, and minus 1, or 9 minus 6. This is 3. We don't have to borrow this
time.

 1 11
 93702
- 58358

 35344

So 93702 minus 58358 is 35344.

3/22/25, 3:00 PM Two's Complement

https://www.cs.cornell.edu/~tomf/notes/cps104/twoscomp.html 4/6

Borrowing and it's Relevance to the Negative of a Number

When you want to find the negative of a number, you take the number, and subtract it from zero. Now,
suppose we're really stupid, like a computer, and instead of simply writing a negative sign in front of a
number A when we subtract A from 0, we actually go through the steps of subtracting A from 0.

Take the following idiotic computation of 0 minus 3:

000000
- 3

 1
000000
- 3

 7

 11
000000
- 3

 97

 111
000000
- 3

 997

 1111
000000
- 3

 9997

Et cetera, et cetera. We'd wind up with a number composed of a 7 in the one's digit, a 9 in every digit
more significant than the 100's place.

The Same in Binary

We can do more or less the same thing with binary. In this example I use 8 bit binary numbers, but the
principle is the same for both 8 bit binary numbers (chars) and 32 bit binary numbers (ints). I take the
number 75 (in 8 bit binary that is 010010112) and subtract that from zero.

Sometimes I am in the position where I am subtracting 1 from zero, and also subtracting another
borrowed 1 against it.

 00000000
- 01001011

 1
 00000000
- 01001011

 1

 11
 00000000
- 01001011

 01

 111
 00000000
- 01001011

 101

 1111
 00000000
- 01001011

 0101

 11111
 00000000
- 01001011

 10101

 111111
 00000000
- 01001011

 110101

 1111111
 00000000
- 01001011

 0110101

 11111111
 00000000
- 01001011

 10110101

If we wanted we could go further, but there would be no point. Inside of a computer the result of this
computation would be assigned to an eight bit variable, so any bits beyond the eighth would be
discarded.

With the fact that we'll simply disregard any extra digits in mind, what difference would it make to the
end result to have subtracted 01001011 from 100000000 (a one bit followed by 8 zero bits) rather than
0? There is none. If we do that, we wind up with the same result:

 11111111
 100000000
- 01001011

 010110101

So to find the negative of an n-bit number in a computer, subtract the number from 0 or subtract it from
2n. In binary, this power of two will be a one bit followed by n zero bits.

3/22/25, 3:00 PM Two's Complement

https://www.cs.cornell.edu/~tomf/notes/cps104/twoscomp.html 5/6

In the case of 8-bit numbers, it will answer just as well if we subtract our number from (1 + 11111111)
rather than 100000000.

 1
+ 11111111
- 01001011

In binary, when we subtract a number A from a number of all 1 bits, what we're doing is inverting the
bits of A. So the subtract operation is the equivalent of inverting the bits of the number. Then, we add
one.

So, to the computer, taking the negative of a number, that is, subtracting a number from 0, is the same
as inverting the bits and adding one, which is where the trick comes from.

Thomas Finley 2000

3/22/25, 3:00 PM Two's Complement

https://www.cs.cornell.edu/~tomf/notes/cps104/twoscomp.html 6/6

