
ELEC 6061 Winter 2006

Lecture 6: Discrete Equivalents
Lecturer: Peyman Gohari

Finding the discrete equivalent of a continuous system is desired when:

1. A discrete equivalent of a continuous plant is needed to simulate a sampled-data system.
In a sampled-data system controller is discrete while plant is continuous. To simulate
the entire system as a discrete-time system one needs to find the discrete equivalent of
the plant (preceded by a hold circuit, and followed by a sampler).

2. To design a digital controller for a continuous-time plant one may start from scratch and
directly design a digital controller (this will be discussed in future lectures). Alterna-
tively, one may take advantage of the vast body of knowledge available on continuous-
control design by taking the following two steps:

(a) Design (or have designed) a continuous-time controller for the plant. In his cal-
culations the designer should take into account the T/2 seconds delay introduced
by sampling and hold.

(b) Find the discrete equivalent of the above design, for implementation by a digital
computer.

This method of design is called emulation.

In this chapter three methods for finding discrete equivalents are discussed. The first method
is to use numerical integration to approximate a system described by a set of linear differential
equations. The second method uses the idea of pole-zero mapping to find the discrete-
time counterpart of a continuous-time transfer function. Recall that a continuous-time pole
located at s = s0 corresponds to a discrete-time pole at z = es0T . Finally, we discuss
hold equivalents, which uses different extrapolation techniques to convert samples into a
continuous-time signal.

6.1 Design of discrete equivalents via numerical inte-

gration

To obtain the discrete equivalent of a transfer function via numerical integration, we first
write the system differential equation, and then apply one of the following numerical inte-

6-1

Lecture 6: Discrete Equivalents 6-2

gration techniques introduced before:

ẋ(k) ≈
x(k+1)−x(k)

T
Forward rectangular rule

ẋ(k + 1) ≈
x(k+1)−x(k)

T
Backward rectangular rule

ẋ(k)+ẋ(k+1)
2

≈
x(k+1)−x(k)

T
Trapezoid rule

The operation can be carried out directly on transfer function if one translates the above
equations into frequency domain. In our translation, each discrete-time left-shift by n cor-
responds to a zn multiplying factor in z-domain, and each dn

dtn
in continuous-time domain

corresponds to an sn multiplying factor in Laplace domain. Thus we have:

s ←−
z−1
T

Forward rectangular rule
sz ←−

z−1
T

Backward rectangular rule
s+sz

2
←−

z−1
T

Trapezoid rule

which simplifies to:

s ←− z−1
T

Forward rectangular rule
s ←− z−1

Tz
Backward rectangular rule

s ←− 2
T

z−1
z+1

Trapezoid rule

The trapezoid rule is also called Tustin’s method in digital control community.

Each of the above relations can be viewed as a map from z-plane to s-plane1. Since we
are more familiar with s-plane characteristics, it would be useful to find the inverse of each
transformation as a map from s-plane to z-plane:

z = sT + 1 Forward rectangular rule
z = 1

1−Ts
Backward rectangular rule

z = 1+Ts/2
1−Ts/2

Trapezoid rule

It is interesting to see how the stable region of s-plane (that is, the right-half plane described
by Re(s) > 0) is mapped to z-plane. As illustrated in Figure 6.1, under trapezoid rule the
stable region of s-plane is mapped exactly to the stable region of z-plane. This and other
observations are summarized below.

1 Under trapezoid rule, the discrete-time system is stable if and only if the continuous-time
system is stable.

2 Under backward rectangular rule, the discrete-time system is stable if the continuous-time
system is stable.

1The third mapping is called a bilinear transformation.

Lecture 6: Discrete Equivalents 6-3

3 Under forward rectangular rule, the discrete-time system is stable only if the continuous-
time system is stable.

�������������
�������������
�������������
�������������
�������������
�������������

�����������
�����������
�����������
�����������
�����������
�����������

�����
�����
�����

�����
�����
�����

�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

(b) (c)(a)

Continuous
stablestable =⇒ ContinuousDiscrete

stable ⇐⇒
Discrete

stable
ContinuousDiscrete

stablestable ⇐=

Can have continuous unstable,Can have continuous stable,
discrete unstable. discrete stable.

Figure 6.1: The image of the stable region of s-plane under three transformations: (a)
forward rectangular, (b) backward rectangular, and (c) bilinear.

Despite the congruence of stability under the trapezoid rule, the scheme suffers from a serious
drawback: the entire imaginary axis is mapped to only 2π-length of the unit circle! This
is a great amount of distortion, which is overcome by introducing an extension of Tustin’s
rule. The approach is called bilinear with prewarping. The idea is to ensure that at a pre-
specified frequency, discrete-time transfer function has exactly the same characteristics (gain
and phase) as the corresponding continuous-time transfer function. The transformation is
bilinear like Tustin’s, however the constant coefficient (which used to be 2

T
) is different:

s =
ω0

tan(ω0T/2)

z − 1

z + 1

Thus, denoting the discrete equivalent of H(s) by HBP(z) (for bilinear with prewarping), the
relation between the continuous- and discrete-time transfer functions is:

HBP(z) = H(s)
∣

∣

∣

s = ω0

tan(ω0T/2)
z−1
z+1

Lecture 6: Discrete Equivalents 6-4

Now suppose a sinusoid at the continuous frequency of s = jω0, which corresponds to the
discrete frequency of z = ejω0T , is applied to the systems. We have:

HBP(e
jω0T) = H(

ω0

tan(ω0T/2)

ejω0T
− 1

ejω0T + 1
)

= H(
ω0

tan(ω0T/2)

ejω0T/2
− e−jω0T/2

ejω0T/2 + ejω0T/2
)

= H(
ω0

tan(ω0T/2)
j
2 sin(ω0T/2)

2 cos(ω0T/2)

= H(jω0)

That is, a sinusoid at frequency ω0 experience the same transfer function in both continuous
and discrete domains.

Example 1 A third-order low-pass Butterworth filter is described by

H(s) =
1

s3 + 2s2 + 2s+ 1

The discrete equivalent of the filter is calculated using forward rectangular rule, backward
rectangular rule, Tustin’s bilinear rule, and bilinear rule with prewarping at ω = 1, at
sampling rates fs = 10, 1, 0.5 Hertz (Figure 6.4). Observe that at the high sampling rate of
fs = 10 Hertz (60 times the bandwidth) all discrete approximations perform equally well. At
the slow rate of fs = 1 Hertz, the forward rule results in an unstable discrete-time system.
(Recall that according to Figure 6.1 in this case it is possible for the discrete equivalent
of a continuous-time, stable system to be unstable.) At the very slow rate of fs = 0.5Hz,
although all techniques are inaccurate, bilinear rule with prewarping has the advantage of
generating the same magnitude and phase at the cutoff frequency, which was selected as the
prewarping frequency.

2

6.2 Zero-pole matching equivalents

As we saw before a pole s0 of the Laplace transform of a continuous-time signal is related to
a pole z0 of the z-transform of signal samples according to z0 = es0T . The idea of zero-pole
matching is to use this mapping to determine the location of zeros as well. The procedure
is outlined below.

1. A continuous-time pole at s = s0 is mapped to a discrete-time pole at z = es0T .

Lecture 6: Discrete Equivalents 6-5

2. A continuous-time, finite, zero at s = s0 is mapped to a discrete-time zero at z = es0T .

3. Letm and n be the degree of numerator and denominator of a continuous-time transfer
function. If m < n, then the system will have n−m zeros at infinity. Each continuous-
time zero at s =∞ is mapped to a discrete-time zero at z = −1. The rationale is that
we would like the highest continuous-time frequency of s = j∞ to correspond to the
highest discrete-time frequency of2 z = ej π

T
T = −1.

4. Finally, we adjust gain of the discrete equivalent by making continuous-time and
discrete-time systems gains equal at a pre-specified frequency, in other words, we de-
mand the following equality:

Hzp(e
jω0T) = H(jω0)

Often in practice we require the DC gains to be equal, that is, ω0 = 0, in which case
we must have:

Hzp(1) = H(0)

Exercise 1 Compute the discrete equivalent to

H(s) =
a

s+ a

by zero-pole matching such that the DC gains of discrete equivalent and original system are
equal.

Answer:

Hzp(z) =
1− e−aT

z − e−aT

2

6.3 Hold equivalents

In the final method of computing a discrete equivalent for a continuous-time system, we
assume that the system is part of a digital loop, and as such is preceded by a hold cir-
cuit and is followed by a sampler (Figure 6.2). It is then desired to find the discrete-time
transfer function from input samples e(k) to output samples u(k), which will be a discrete
approximation to the continuous-time transfer function from continuous-time input e(t) to
continuous-time output u(t).

Naturally the quality of approximation depends on the method used for extrapolating sam-
ples.

2If it is desired to have a delay of one sampling period (for example, to allow enough time for the
computation of output) then one of the continuous-time zeros at s = ∞ should be mapped to a discrete-
time zero at z = ∞. Note that in this case after dividing numerator by denominator we would have
H(z) = Az−1 + Bz−2 + · · · , which gives us the desired unit delay of z−1.

Lecture 6: Discrete Equivalents 6-6

Sampler
hold

&
D/A

Hh0(z)

u(k)e(k) u(t)e(t)
H(s)

Figure 6.2: Hold equivalent.

6.3.1 Zero-order hold equivalent

In the simplest extrapolation method introduced earlier, samples are held constant until the
next sampling instant. We found that in this case the discrete equivalent can be calculated
using the following formula:

Hh0(z) = (1− z−1)Z
{H(s)

s

}

Exercise 2 Compute zero-order-hold equivalent to

H(s) =
a

s+ a

Answer:

Hzp(z) =
1− e−aT

z − e−aT

Note that incidentally the answer is the same as previous exercise where pole-zero matching
was used; however, this is not true in general. 2

6.3.2 Triangle hold equivalent

We now consider a first-order hold, which extrapolates samples by connecting them using
straight lines. The impulse response of a first-order hold is shown in Figure 6.3. As evident
from the figure, a first-order hold is noncausal, but this does not cause any problem as the
resulting discrete-equivalent is in fact causal.

The derivation of first-order and zero-order equivalents are similar (the latter was carried out
in Section 4, Lecture 3; the former is left as an exercise). The first-order equivalent Htri(z)
of a continuous-time transfer function H(s) is:

Htri(z) =
(z − 1)2

Tz
Z

{H(s)

s2

}

Lecture 6: Discrete Equivalents 6-7

1

−T T

Figure 6.3: The impulse response of a triangle (first-order) hold.

In MATLAB, the statement sysD=c2d(sys,T,parameter) computes the discrete equivalent
sysD of a continuous-time system sys when the sampling period is T, using the method
specified by parameter : ’tustin’ for Tustin’s, ’prewarp’ for bilinear with prewarping,
’matched’ for pole-zero matching, ’zoh’ for zero-order hold, and finally ’foh’ for first-
order (triangular) hold.

Example 2 Figure 6.5 compares discrete equivalents of a Butterworth filter calculated using
pole-zero matching, zero-order hold and first-order (triangular) hold, when sampling rates
are fs = 1 and fs = 0.5 Hertz. Observe that even at the very low sampling rate of fs = 0.5
Hz the triangular equivalent shows a very good phase response. 2

Lecture 6: Discrete Equivalents 6-8

0 0.5 1 1.5 2 2.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4
Fig. 6.4a Magnitude and phase of discrete equivalents

0 0.5 1 1.5 2 2.5
−250

−200

−150

−100

−50

0
bilinr = o,warp = +, backwd = *, forwd = x

normalized frequency w/wp

0 0.5 1 1.5 2 2.5
0

0.2

0.4

0.6

0.8

1

Fig. 6.4b Magnitude and phase of discrete equivalents

0 0.5 1 1.5 2 2.5
−250

−200

−150

−100

−50

0
bilinr = o,warp = +, backwd = *, forwd = x

normalized frequency w/wp

Lecture 6: Discrete Equivalents 6-9

0 0.5 1 1.5 2 2.5
0

0.2

0.4

0.6

0.8

1

Fig. 6.4c Magnitude and phase of discrete equivalents

0 0.5 1 1.5 2 2.5
−250

−200

−150

−100

−50

0
bilinr = o,warp = +, backwd = *, forwd = x

normalized frequency w/wp

Figure 6.4: Numerical integration of a third-order low-path Butterworth filter using forward
rectangular rule, backward rectangular rule, Tustin’s bilinear rule, and bilinear rule with
prewarping at ω = 1, at sampling rates a) fs = 10, b) fs = 1, and c) f(s) = 0.5 Hertz.

Lecture 6: Discrete Equivalents 6-10

0 0.5 1 1.5 2 2.5
0

0.2

0.4

0.6

0.8

1
Fig. 6.9a (zoh = o, zero−pole = + ,triangle = x)

0 0.5 1 1.5 2 2.5
−350

−300

−250

−200

−150

−100

−50

0

normalized frequency w/wp

0 0.5 1 1.5 2 2.5
0

0.2

0.4

0.6

0.8

1
Fig. 6.9b (zoh = o, zero−pole = + ,triangle = x)

0 0.5 1 1.5 2 2.5
−700

−600

−500

−400

−300

−200

−100

0

normalized frequency w/wp

Figure 6.5: Comparing the performance of pole-zero matching, zero-order hold and triangular
hold, when sampling rate is a) fs = 1, and b) fs = 0.5 Hertz.

