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Bode Plots Overview
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Bode plots are a very useful way to represent the gain and phase of a
system as a function of frequency. This is referred to as the frequency
domain behavior of a system. This web page attempts to demystify the
process. The various parts are more-or-less stand alone, so if you want to
skip one or more, that should not be a problem. If you are only interested in
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MATLAB program to make piecewise linear Bode plots is described in
BodePlotGui.

The documents are:

1

7.

Q

. What is the frequency domain response? In other words, "What does a

Bode Plot represent?" This includes an animation.

. How are the piecewise linear asymptotic approximations derived?
. Rules for making Bode plots. This is a quick "How to" lesson for drawing

Bode plots.

. Some examples (1, 2, 3, 4, 5, 6) - (combined into one file).
. BodePlotGui: A software tool for generating asymptotic Bode plots.
. A MatLab program for making semi-logarithmic paper for drawing your own

Bode plots.

A table summarizing Bode rules
ThaAa MATI AR filae AicniicanAd in thAacAa AAAiimAan to

What Bode Plots Represent: The
Frequency Domain

i r i i plots] [Making Plot] [Examples] [Drawing Tool]
BodePlotGui| [Rules Table| |Printable

@ ¢ » ¢
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Contents

¢ Why Sine Waves?
« Determining system output given input and transfer function
o Interactive Demo
o Things to try
= Key Concept: It is useful to study the response of a
system to sinusoidal inputs
= Key Concept: The frequency response is shown
with two plots, one for magnitude and one for
phase.
e An animation

Why Sine Waves?

One of the most commonly used test functions for a circuit or system is
the sine (or cosine) wave. This is not because sine waves are a particularly
common signal. They are in fact quite rare - the transmission of electricity (a
60 Hz sine wave in the U.S., 50 Hz in much of the rest of the world) is one
example. The reason sine waves are important is complex and involve a
branch of Mathematics called Fourier Theory. Briefly put: any signal going
into a circuit can be represented by a sum of sinusoidal waves of varying
frequency and amplitude (often an infinite sum).
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This is why sine waves are important. Not because they are common, but
because we can represent arbitrarily complex functions using only these very
simple function.

Determining system output given input and transfer
function

Given that sinusoidal waves are important, how can we analyze the
response of a circuit or system to sinusoidal inputs (after all transients have
died out - the so-called sinusoidal steady state)? There are many ways to do
this, depending on your mathematical sophistication. Let's use a fairly basic
explanation that uses phasors. If you are unfamiliar with phasors, a brief
introduction is here. A technique using Laplace Transforms is given here.

For a system of the type we are studying (linear constant coefficient) if the
input to a system is sinusoidal at a particular frequency, then the output of
the system is also a sinusoid at the same frequency, but typically with a
different amplitude or phase. Put another way, if the input to a system
(described by the transfer function H(s)) is A-cos(w-t+¢) then the output is
M-A-cos(w-t+¢+0). This is likewise true for sine, since it simply a cosine with
¢=-m2 radians (or -90°). This is shown below.

|
Acos{ot+ b s M-Acos|at+d=6
[ 'ﬂ S%F(fl:n’ f ] }
Input H(s) Output

In this diagram the magnitude of the sinusoid has changed by a factor of M
(which we will take to be a positive real number) and the phase has changed
by a factor of 8 (a real number, not necessarily positive). It is our task to find
the value of M and 6 for a particular system, H(s), at a particular frequency,
w. We call M the magnitude of the system (or transfer function) at w, and we
call 8 the phase of the system at that frequency.

Using complex impedances it is possible to find the transfer function of a
circuit. For example, the circuit below is described by the transfer function,
H(s), where s= jw.

Circuit Transfer Function

Consider the case where R=2MQ and C=1pF. In that case:

1 ) 1
H(s) = H(Jw):m
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this by simple multiplication

Vout (_](U) = Vin (]Cd) : H(]W) = Vin (]w) ’

If we have a phasor representation for the input and the transfer function, the
multiplication is simple (multiply magnitudes and add phases). Finding the

output becomes easy. Try it out.

Ipsa.swarthmore.edu/Bode/BodeAll.html
Generally we know the input V;, and want to find the output V ;. We can do

1
1+ 52w

Interactive Demo
Choose a transfer function.

@
H(S) - 1—:23
O
1.6
H(s) = $210.5511.6

Set input parameters,
Vin(t)=A-cos(w-t+®).

Setw: 1000
0
i) 3
SetA: 1 A
0.2
aanunl) 2
Setd: 0 0
-180
180

At w =1, H(jw) = 1/(1.00
+j2.00) = 0.45.-63.4° =
M.6.

Since the input can be
represented as 1.0°,
The output is

H (jw) = —

1472w

H (jw) = G5y,

(1.6—w?)+5(0.5-w)

M-A~(8+9) =
0.45.-63.4°.

Magnitude | Phase Dzir:‘aein
) | oas s P0G
Input 1 0° 1 -Cogo()‘l 1+
Output | 0.45 -63.4° O-f%%cﬁg-t
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Use the radio buttons
to choose a transfer
function, and the sliders
to choose the frequency,
amplitude and phase of
the input (you can also
set frequency by clicking
and dragging in either of
the top two graphs.)

The paragraph below
the sliders goes through
the calculation of the
numerical value of the
transfer function at the
chosen frequency, and
gives H(jw) in terms of
magnitude and phase.
Note that these are also
shown on the top two
graphs by a dot. To find
the magnitude of the
output, simply multiply
the magnitude of the
input (A) by the
magnitude of the
transfer function (M).
The phase of the output
is sum of the input
phase (¢) and the
phase of the transfer
function (0).

The bottom graph
shows input, Vj,(t) in

black, and Vg (t) in

magenta. The period, T
(maroon), is shown from
one upward zero-
crossing of the input
function to the next
(shown by black dots).
The delay T4 (green), is

shown from an upward
zero crossing of the
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input to the next upward

zero crossing of the

output (green dot). The

phase is negative (since

output lags input) and

equal to -T4/T-360°. So

if the delay was Ty4=T/4

(i.e., one quarter of a
period) the phase shift
would be -90°)

Magnitude ol
1
T
0 T
0 1
Phase of H
0
’3: A=

The Asymptotic Bode Diagram:
Derivation of Approximations

( i r i i plots] [Making Plot] [Examples] [Drawing Tool]
BodePlotGui| [Rules Table| |Printable

Skip ahead to interactive demos.

Contents
« Introduction
o A Magnitude Plot
o A Phase Plot
= A more generic derivation
e Making a Bode Diagram
o A Constant Term
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= |viagnituae
= Phase

= Example: Bode Plot of Gain Term
= Key Concept: Bode Plot of Gain Term

A Real Pole
= Magnitude
= Phase

= Example: Real Pole

= Example: Repeated Real Pole

= Key Concept: Bode Plot for Real Pole

= Aside: a different formulation of the phase

app

A Real Zero
= Magnitude

= Phase

roximation

= Example: Real Zero
= Key Concept: Bode Plot of Real Zero:
A Pole at the Origin

= Magnitude
= Phase

= Example: Pole at Origin

= Key Concept: Bode Plot for Pole at Origin
A Zero at the Origin

= Example: Zero at Origin

= Key Concept: Bode Plot for Zero at Origin

A Complex Conju
= Magnitude
= Phase

= Key Concept: Bode Plot for Complex Conjugate

gate Pair of Poles

Poles

A Complex Conju

gate Pair of Zeros

= Example: Complex Conjugate Zero

= Key Concept: Bode Plot of Complex Conjugate

Zeros
¢ Non-Minimum Phase Systems
¢ Interactive Demos:

Interactive Demo
Interactive Demo
Interactive Demo
Interactive Demo
Poles

Interactive Demo
Zeros

: Bode Plot of Constant Term

: Bode Plot of a Real Pole

: Bode Plot of a Real zero

: Bode Plot of a Pair of Complex Conjugate

: Bode Plot of a Pair of Complex Conjugate
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Skip ahead to interactive demos.

Introduction

Given an arbitrary transfer function, such as

100s + 100
s2 + 110s + 1000

H(s) =

if you wanted to make a mode plot you could calculate the value of H(s)
over a range of frequencies (recall s=j-w for a Bode plot), and plot them.
This is what a computer would naturally do. For example if you use
MATLAB® and enter the commands

(>> mySys=tf£(100*[1 1],[1 110 1000])
mySys =
100 s + 100

s*2 + 110 s + 1000
\>> bode (mySys)

J

you get a plot like the one shown below. The asymptotic solution is given
elsewhere.

Bode Diagram

Magnitude (dB)
[\)
(@]

_40 n Lol n Lol n Lol n Lol n Lol
90 T T T T T T T T T T

Phase (deg)
[e]

45 f .

-90 | Ll Ll Ll Ll
1072 107! 10° 10 102 10° 10
Frequency (rad/s)

However, there are reasons to develop a method for sketching Bode
diagrams manually. By drawing the plots by hand you develop an

understandina about how the locations of poles and zeros effect the shape of
https://lpsa.swarthmore.edu/Bode/Bode All.html 9/96
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the plots. With this knowledge you can predict how a system behaves in the
frequency domain by simply examining its transfer function. On the other
hand, if you know the shape of transfer function that you want, you can use
your knowledge of Bode diagrams to generate the transfer function.

The first task when drawing a Bode diagram by hand is to rewrite the
transfer function so that all the poles and zeros are written in the form (1+s/
wg). The reasons for this will become apparent when deriving the rules for a

real pole. A derivation will be done using the transfer function from above,
but it is also possible to do a more generic derivation. Let's rewrite the
transfer function from above.

H(s) = 100 s+1 100 1+s/1
S) = =
(s + 10)(s + 100) 10 (1 + 5/10) - 100 - (1 + 5/100)
1+s/1

= 51001 1 5/100)

Now let's examine how we can easily draw the magnitude and phase of this
function when s=jw.

First note that this expression is made up of four terms, a constant (0.1), a
zero (at s=-1), and two poles (at s=-10 and s=-100). We can rewrite the
function (with s=jw) as four individual phasors (i.e., magnitude and phase),
each phasor is within a set of square brackets to make them more easily
distinguished from each other..

1+ jw/1
(1 + jw/10)(1 + jw/100)
11+ juo/1] 2 (14 jiw/1)]
(11 + jw/10] Z (1 + jw/10)] [|1 + jw/100| Z (1 + jw

H(jw) = 0.1

= []0.1| £ (0.1)]

We will show (below) that drawing the magnitude and phase of each
individual phasor is fairly straightforward. The difficulty lies in trying to draw
the magnitude and phase of the more complicated function, H(jw). To start,
we will write H(jw) as a single phasor:

i = (oa) o2
T =\ T Jw 10 1 1 jw/100)
= |H(jw)| £H (jw)

)(4(0.1)+é(1+jw/1)—4|

1+ jw/1]
11+ jw/10] |1 + jw/100|
ZH(jw) = £(0.1) + £ (1 + jw/1) — Z (1 + jw/10) — Z (1 + jw/100)

[H (jw)| = [0.1]

https://lpsa.swarthmore.edu/Bode/Bode All.html
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Drawing the phase is fairly simple. We can draw each phase term
separately, and then simply add (or subtract) them. The magnitude term is
not so straightforward because the magnitude terms are multiplied, it would
be much easier if they were added - then we could draw each term on a
graph and just add them. We can accomplish this by usinga logarthmic scale
(so multiplication and division become addition and subtraction). Instead of a
simple logarithm, we will use a deciBel (or dB) scale.

A Magnitude Plot

One way to transform multiplication into addition is by using the logarithm.
Instead of using a simple logarithm, we will use a deciBel (named for
Alexander Graham Bell). (Note: Why the deciBel) The relationship between a
quantity, Q, and its deciBel representation, X, is given by:

X =20- lOgl(] (Q)
So if Q=100 then X=40; Q=0.01 gives X=-40; X=3 gives Q=1.41; and so on.
If we represent the magnitude of H(s) in deciBels several things happen.
|1+ jw/1]
11+ jw/10] |1 + jw/100]

|1+ jw/1] )
20 - lo H(s)|) =20-1o 0.1
g0 ([H(s)]) B10 <| | |1+ jw/10] |1 + jw/100]

[H(s)| = 10.1]

= 20 - logy, (|0.1]) + 20 - logy, (|1 + jw/1|) + 20 - log

= 20 - logy, (|0.1]) + 20 - logy, (|1 + jw/1|) — 20 - log

The advantages of using deciBels (and of writing poles and zeros in the form
(1+s/wg)) are now revealed. The fact that the deciBel is a logarithmic term

transforms the multiplications and divisions of the individual terms to
additions and subtsractions. Another benefit is apparent in the last line that
reveals just two types of terms, a constant term and terms of the form
20-10g10(I1+jw/wgl). Plotting the constant term is trivial, however the other

terms are not so straightforward. These plots will be discussed below.
However, once these plots are drawn for the individual terms, they can
simply be added together to get a plot for H(s).

A Phase Plot

If we look at the phase of the transfer function, we see much the same
thing: The phase plot is easy to draw if we take our lead from the magnitude
plot. First note that the transfer function is made up of four terms. If we want
https:/Ipsa.swarthmore.edu/Bode/Bode All html 11/96
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LH(s) = £(0.1)+ £ (1 + jw/1) — Z (1 + jw/10) — Z (1 + jw/100)

Again there are just two types of terms, a constant term and terms of the
form (1+jw/w ). Plotting the constant term is trivial; the other terms are

discussed below.

A more generic derivation

The discussion above dealt with only a single transfer function. Another
derivation that is more general, but a little more complicated mathematically
is here.

Making a Bode Diagram

Following the discussion above, the way to make a Bode Diagram is to
split the function up into its constituent parts, plot the magnitude and phase
of each part, and then add them up. The following gives a derivation of the
plots for each type of constituent part. Examples, including rules for making
the plots follow in the next document, which is more of a "How to" description
of Bode diagrams.

A Constant Term

Consider a constant term:H(s) = H(jw) = K

Magnitude

Clearly the magnitude is constant as w varies. |H (jw)| = | K|

Phase

The phase is also constant. If K is positive, the phase is 0° (or any even
multiple of 180°, i.e., £360°). If K is negative the phase is -180°, or any odd
multiple of 180°. We will use -180° because that is what MATLAB® uses.
Expressed in radians we can say that if K is positive the phase is 0 radians, if
K'is negative the phase is -7t radians.

f Example: Bode Plot of Gain Term

H(s) = H (jw) =15
|H (jw)| = |15| = 15 = 23.5dB
/H (jw) = /15 = 0°

The magnitude (in dB is calculated as
https://lpsa.swarthmore.edu/Bode/Bode All.html 12/96
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20 - log,, (15) = 23.5

Bode Diagram
30 T ¢ rreoerry T ¢ rreoerry T ¢ rreoerry

20

o
T

Magnitude (dB)
3 o

.1)
o
T

¥
<)

180

90 r

0

Phase (deg)

T

- l 80 L L L L Lol 1 L 1 L Lol L L 1 L Lol
107! 10° 10! 102
Frequency (rad/s)

Key Concept: Bode Plot of Gain Term
» For a constant term, the magnitude plot is a straight line.

» The phase plot is also a straight line, either at 0° (for a positive
constant) or +180° (for a negative constant).

Interactive Demo

A Real Pole

. . ) 1 N
Consider a simple real pole : H (s) = — H (jw) = =
The frequency wg is called the break frequency, the corner frequency or the
3 dB frequency (more on this last name later). The analysis given below

assumes wy is positive. For negative wg here.

Magnitude

The magnitude is given by

IH(jw)|=‘ —
|1+‘7w_0| 2 w 2
17+ (2)

https://lpsa.swarthmore.edu/Bode/Bode All.html 13/96
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1
w 2
1+ (w_o)

Let's consider three cases for the value of the frequency, and determine the
magnitude in each case.:

|H(jw)|d3 = 20 - log,

Case 1) w<<wg. This is the low frequency case with w/wy—0. We can

write an approximation for the magnitude of the transfer function:

2

1

1+ <i> ~ 1, and |H (jw)|;5 ~ 20 - log, <—) =0
Wy 1

This low frequency approximation is shown in blue on the diagram below.

Case 2) w>>wg. This is the high frequency case with w/wp—. We can

write an approximation for the magnitude of the transfer function:

w 2 w 2 w
L+ (85) =y (&) ~ 20
|H (jw)lgp ~ 20 - logy, (5)
The high frequency approximation is at shown in green on the diagram

below. It is a straight line with a slope of -20 dB/decade going through the
break frequency at 0 dB (if w=w the approximation simplifies to 0 dB;

w=10-wq gives an approximate gain of 0.1, or -20 dB and so on). That is, the
approximation goes through 0 dB at w=w, and for every factor of 10
increase in frequency, the magnitude drops by 20 dB..

Case 3) w=w,. At the break frequency

1
H (7 =20-1 =20-1 — | ~ —-3dB
|H (jwo)lyp 0810 > 0g10 <\/§>

This point is shown as a red circle on the diagram.

To draw a piecewise linear approximation, use the low frequency
asymptote up to the break frequency, and the high frequency asymptote
thereafter.

Magnitude of Simple Real Pole

Asymptotic approximatfon
(transparent:magenta line)

https://lpsa.swarthmore.edu/Bode/Bode All.html
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0 ﬁ -------------- .'.'\ }
Exact function / @
(dotted line) f :
9 -3dB at w=w
3
S
L
-20
Low frequency asymptote
(blue line at 0dB)
High frequency asymptote
(green line at -20dB/dec,
_40 i L L | thrOlTIgh.Od.B.a.t.“/:?w{\) i I PR A | L L P R R R
0.1 1 10 wo 100 1000
w, rad/S

The resulting asymptotic approximation is shown highlighted in transparent
magenta. The maximum error between the asymptotic approximation and
the exact magnitude function occurs at the break frequency and is

approximately -3 dB.

Magnitude of a real pole: The piecewise linear asymptotic Bode plot for
magnitude is at 0 dB until the break frequency and then drops at 20 dB per
decade as frequency increases (i.e., the slope is -20 dB/decade).

Phase

The phase of a single real pole is given by is given by
) 1 L w w
/H(jw)=4| ——— | =—4(1+j— | = —arctan| —
1 + ]w_o Wy wo
Let us again consider three cases for the value of the frequency:

Case 1) w<<wq. This is the low frequency case with w/wy—0. At these

frequencies We can write an approximation for the phase of the transfer
function

/H (jw) ~ —arctan(0) = 0° = 0 rad

The low frequency approximation is shown in blue on the diagram below.

Case 2) w>>wg. This is the high frequency case with w/wg—. We can

write an approximation for the phase of the transfer function

/H (jw) ~ — arctan(co) = —90° = —g rad

15/96
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The high frequency approximation is at shown in green on the diagram
below. It is a horizontal line at -90°.

Case 3) w=wy. The break frequency. At this frequency
. o ™
ZH (jw) = —arctan(1) = —45° = 7 rad

This point is shown as a red circle on the diagram.

Angle of Simple Real Pole

45 T T 1Ty T o T | LRI | T T
Asymptotic approximation
(transparent magenta line
0 prrr T K
-45° at w=w =30 rad/sec
o
- Exact function / /
3 45h (dotted line) -
I
N ‘0,
Low frequency asymptote
(blue line at 0°) R
-90 / "
High frequency asymptote
(green line at -90°)
_135 L L P A | L I P R | L I P R | L I P R A
0.1 1 0.1 wo 10 wo 100 10~w0 1000

w, rad/S

A piecewise linear approximation is not as easy in this case because the
high and low frequency asymptotes don't intersect. Instead we use a rule
that follows the exact function fairly closely, but is also somewhat arbitrary.
Its main advantage is that it is easy to remember.

Phase of a real pole: The piecewise linear asymptotic Bode plot for phase
follows the low frequency asymptote at 0° until one tenth the break frequency
(0.1-wq) then decrease linearly to meet the high frequency asymptote at ten

times the break frequency (10-wg). This line is shown above. Note that there
is no error at the break frequency and about 5.7° of error at 0.7-wgand 10-w,

the break frequency.

( Example: Real Pole )

The first example is a simple pole at 5 radians per second. The asymptotic
approximation is magenta, the exact function is a dotted black line.

https://lpsa.swarthmore.edu/Bode/Bode All.html 16/96
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Magnitude Plot
0 presssssnnannnnan ................,____""....
:-é 0000"."
’5 "”0‘
£
= 20f
-40 : R | : M R L A | : O
0.1 1 wg 10 100
Phase Plot
45 T L LA T L R | T T
0 pressennian, [ ey
o l"ll,""
S 45 .,
T
-90 e R LT T T T T T I I
_135 L L PR B | L L PR B | L L PR B |
0.1 0.1-w0 1 wg 10 10-0.)0 100
w, rad/S
q J
( Example: Repeated Real Pole )
The second example shows a double pole at 30 radians per second.
Note that the slope of the asymptote is -40 dB/decade and the phase
goes from 0 to -180°. The effect of repeating a pole is to double the slope
of the magnitude to -40 dB/decade and the slope of the phase to
-90°/decade.
1
H(Q\ = —-———

https://lpsa.swarthmore.edu/Bode/Bode All.html 17/96
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Phase Plot
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45+
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+ The phase plot is at 0° until one tenth the break frequency and then

Key Concept: Bode Plot for Real Pole
For a simple real pole the piecewise linear asymptotic Bode plot for

magnitude is at 0 dB until the break frequency and then drops at 20

dB per decade (i.e., the slope is -20 dB/decade). An nt order pole
has a slope of -20-n dB/decade.
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drops linearly to -90° at ten times the break frequency. An nt order
pole drops to -90°n.

The analysis given above assumes wy, is positive. For negative w, here.

Interactive Demo

Aside: a different formulation of the phase approximation

There is another approximation for phase that is occasionally used.
The approximation is developed by matching the slope of the actual
phase term to that of the approximation at w=wgq. Using math similar to

that given here (for the underdamped case) it can be shown that by
drawing a line starting at 0° at w=wg/e™"?=wy/4.81 (or wy-e™?) to -90°
at w=wq-4.81 we get a line with the same slope as the actual function
at w=wg. The approximation described previously is much more

commonly used as is easier to remember as a line drawn from 0° at
wq/5 to -90° at wq5, and easier to draw on semi-log paper. The latter is

shown on the diagram below.

Exact and Approximate Phase (matching slope at «
45 T T T TTTTy T L L LI | T T T T T

1072 1071 10° 10"
w/wo,rad/S

Although this method is more accurate in the region around w=w
there is a larger maximum error (more than 10°) near wy/5 and wg'5

when compared to the method described previously.

A Real Zero

Tha niarawiea linaar annrnvimatinn far a 7zarn ie miirh lika that far a nnla
https://lpsa.swarthmore.edu/Bode/Bode All.html 19/96
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Consider a simple zero: H(s) =1+ -, H(jw) =1+ j.

Magnitude

The development of the magnitude plot for a zero follows that for a pole.
Refer to the previous section for details. The magnitude of the zero is given

by

w
oy
)| = [1+ 52

Again, as with the case of the real pole, there are three cases:

1. At low frequencies, w<<wg, the gain is approximately 1 (or 0 dB).
2. At high frequencies, w>>w, the gain increases at 20 dB/decade and goes

through the break frequency at 0 dB.
3. At the break frequency, w=wg, the gain is about 3 dB.

Magnitude of a Real Zero: For a simple real zero the piecewise linear
asymptotic Bode plot for magnitude is at 0 dB until the break frequency and
then increases at 20 dB per decade (i.e., the slope is +20 dB/decade).

Phase
The phase of a simple zero is given by:

ZH (jw) = ~£ (1 —|—ji> = arctan(i)
wo

Wo

The phase of a single real zero also has three cases (which can be derived
similarly to those for the real pole, given above):

1. At low frequencies, w<<wg, the phase is approximately zero.
2. At high frequencies, w>>wg, the phase is +90°.
3. At the break frequency, w=w, the phase is +45°.

Phase of a Real Zero: Follow the low frequency asymptote at 0° until one
tenth the break frequency (0.1 wg) then increase linearly to meet the high

frequency asymptote at ten times the break frequency (10 w).

( Example: Real Zero

This example shows a simple zero at 30 radians per second. The
asymptotic approximation is magenta, the exact function is the dotted
black line.

https://lpsa.swarthmore.edu/Bode/Bode All.html 20/96
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Magnitude Plot
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» The plots for a real zero are like those for the real pole but mirrored

Key Concept: Bode Plot of Real Zero:

about 0dB or 0°.
For a simple real zero the piecewise linear asymptotic Bode plot for
magnitude is at 0 dB until the break frequency and then rises at +20

dB per decade (i.e., the slope is +20 dB/decade). Ann  order zero
has a slope of +20-n dB/decade.
The phase plot is at 0° until one tenth the break frequency and then

ricac linaarhs A £ON° at tan timae tha hraak framiancy An nth Ardar
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zero rises to +90°-n.

The analysis given above assumes the wy, is positive. For negative w, here.

Interactive Demo

A Pole at the Origin

A pole at the origin is easily drawn exactly. Consider

1 _ 1 j

Magnitude

The magnitude is given by
: J 1
H ()| = |- 2| = =
w w
. 1
|H (jw)| ;5 = 20 - log,, =)= —20 - log;, (w)

In this case there is no need for approximate functions and asymptotes, we
can plot the exact funtion. The function is represented by a straight line on a
Bode plot with a slope of -20 dB per decade and going through 0 dB at 1 rad/
sec. It also goes through 20 dB at 0.1 rad/sec, -20 dB at 10 rad/sec... Since
there are no parameters (i.e., wg) associated with this function, it is always

drawn in exactly the same manner.

Magnitude of Pole at the Origin: Draw a line with a slope of -20 dB/decade
that goes through 0 dB at 1 rad/sec.

Phase

The phase of a simple zero is given by (H(jw) is a negative imaginary
number for all values of w so the phase is always -90°):

/H (jw) = / <—1) = —90°

Phase of pole at the origin: The phase for a pole at the origin is -90°.

( Example: Pole at Origin ‘}

This example shows a simple pole at the origin. The exact (dotted

https://lpsa.swarthmore.edu/Bode/Bode All.html
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black line) is the same as the approximation (magenta).
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Key Concept: Bode Plot for Pole at Origin

No interactive demo is provided because the plots are always drawn in the same

» For a simple pole at the origin draw a straight line with a slope of -20
dB per decade and going through 0 dB at 1 rad/ sec.
» The phase plot is at -90°.

¢ The magnitude of an nt" order pole has a slope of -20-n dB/decade
and a constant phase of -90°n.

https://lpsa.swarthmore.edu/Bode/Bode All.html

way.
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A Zero at the Origin

A zero at the origin is just like a pole at the origin but the magnitud

e

increases with increasing w, and the phase is +90° (i.e. simply mirror the

graphs for the pole around the origin around 0dB or 0°).

( Example: Zero at Origin
This example shows a simple zero at the origin. The exact (dotted
black line) is the same as the approximation (magenta).
Magnitude Plot
20 B “““““
o ““‘u”
3 0f
— o
L
20 F “““‘o
-40 “““‘ i | I il
1072 107" 100 10°
Phase Plot
135 T —— : .
90 STTTITLL RN SRR NN E RN NN NN RN NN AR NN NN RN RRR R AR
o
S a5t
T
N
O -
_45 L L P R A | L L P A | il
1072 107" 10° 10"
w, rad/S
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Key Concept: Bode Plot for Zero at Origin
» The plots for a zero at the origin are like those for the pole but
mirrored about 0dB or 0°.
« For a simple zero at the origin draw a straight line with a slope of +20
dB per decade and going through 0 dB at 1 rad/ sec.
» The phase plot is at +90°.

« The magnitude of an nt order zero has a slope of +20-n dB/decade
and a constant phase of +90°-n.

A Complex Conjugate Pair of Poles

The magnitude and phase plots of a complex conjugate (underdamped)
pair of poles is more complicated than those for a simple pole. Consider the
transfer function (with 0<C<1):

2
Wy 1

H(S): 52+2Cw08+w(2) - (i)2+2c<i>—|—1

Wo

The analysis given below assumes the ( is positive. For negative { see here.

Magnitude

The magnitude is given by

[H(jw)| = |———; 4 = =

| 2\ 2 2
. w w
Ay = -20-1og || (1- () ) + (262)

As before, let's consider three cases for the value of the frequency:

Case 1) w<<wg. This is the low frequency case. We can write an
approximation for the magnitude of the transfer function

https://lpsa.swarthmore.edu/Bode/Bode All.html 25/96
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’H(Jw)|dB = —20-logyy (1) = 0

The low frequency approximation is shown in red on the diagram below.

Case 2) w>>wq. This is the high frequency case. We can write an

approximation for the magnitude of the transfer function

2
w w
H(7 =-20-1 — = —-40-1 —
| (Jw)’dB 0819 <<w0> ) 0810 (wo>

The high frequency approximation is at shown in green on the diagram
below. It is a straight line with a slope of -40 dB/decade going through the
break frequency at 0 dB. That is, for every factor of 10 increase in frequency,
the magnitude drops by 40 dB.

Case 3) w=w. It can be shown that a peak occurs in the magnitude plot

near the break frequency. The derivation of the approximate amplitude and
location of the peak are given here. We make the approximation that a peak
exists only when

0<C<0.5
and that the peak occurs at wg with height 1/(2-C).

To draw a piecewise linear approximation, use the low frequency
asymptote up to the break frequency, and the high frequency asymptote
thereafter. If (<0.5, then draw a peak of amplitude 1/(2-:C) Draw a smooth
curve between the low and high frequency asymptote that goes through the
peak value.

As an example for the curve shown below wy=10, {=0.1,

1 1 B 1

H(s) =

52 - 2 o 2
— + 0.02(8 +1 s s s s
100 10 + 0.2 0 +1 o0 + 2¢ o) -
The peak will have an amplitude of 1/(2:0)=5.00 or 14 dB.
Magnitude of Complex Conjugate Poles
' Exact %L'Jrlwction' N\ I/ 14di3 ai szo o
(dotted line) “

Asymptotic approximation 7
(transparent magenta line)

20

10

o
o
»* .
. £}
--------- )
0 =
& ;“
A
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-10 T
o
—°
3 -20r .
f Low frequency asymptote
- (blue line at 0dB)
-30 T
40 + High frequency asymptote .
(green line ‘at -40dB/dec,
50 - through 0dB at w=w) |
_60 L L PR R A | L L PR A | L L I T T L R R R
0.1 1 wg 100 1000

w, rad/S
The resulting asymptotic approximation is shown as a black dotted line, the
exact response is a black solid line.

Magnitude of Underdamped (Complex) poles: Draw a 0 dB at low
frequencies until the break frequency, wg, and then drops with a slope of -40

dB/decade. If (<0.5 we draw a peak of height at wg, otherwise no peak is

drawn.

1
2¢’

Note: The actual height of the peak and its frequency are both slightly less than the
approximations given above. An in depth discussion of the magnitude and phase
approximations (along with some alternate approximations) are given here.

|H (jwo)| ~ |H (jwo)|yp =~ —20 - logy, (2¢)

Phase

The phase of a complex conjugate pole is given by is given by

. 2 .
1
LH(jw):A =/ (ﬁ) + 2¢ (£>+1
jw\ 2 o 1 wo wo ,
(&) +2(5)
204
= — arctan

Let us again consider three cases for the value of the frequency:

Case 1) w<<wg. This is the low frequency case. At these frequencies We

can write an approximation for the phase of the transfer function

2
/H (jw) ~ — arctan(i\ ~ —arctan(0) = 0° = 0 rad

https://lpsa.swarthmore.edu/Bode/Bode All.html 27/96
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The low frequency approximation is shown in red on the diagram below.

Case 2) w>>wg. This is the high frequency case. We can write an
approximation for the phase of the transfer function

/H (jw) ~ —180°

—7 rad

Note: this result makes use of the fact that the arctan function returns a result in quadrant 2
since the imaginary part of H(j&omega;) is negative and the real part is positive.

The high frequency approximation is at shown in green on the diagram
below. It is a straight line at -180°.

Case 3) w=wy. The break frequency. At this frequency

ZH(jwy) = —90°

The asymptotic approximation is shown below for wy=10, ¢=0.1, followed
by an explanation

1 1 1
His) == 00205 +1 2 - ?
Yy . S S S S S
(5) voa(s) 1 () (2)
Angle of Complex Conjugate Poles
45 T T U I | T T 1 T T
wy10%7.6-7
0 \ ......
45 |-Low frequency asymptote

(blue line at 0°)

2 H(jw), °
8

Exact function
(dotted line)

Asymptotic approximation
©} (transparent magenta line)
High frequency asymptote
135 - H (green line at -90°) |
-90° at w=w, 2 /
-180 R L L T T T T
wy 102126
_225 L L P R A | L L ....I.II/. L 1l
0.1 1 wg 100
https://lpsa.swarthmore.edu/Bode/Bode All.html
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w, rad/S

28/96



3/7/25, 8:16 AM

Ipsa.swarthmore.edu/Bode/BodeAll.html

A piecewise linear approximation is a bit more complicated in this case,
and there are no hard and fast rules for drawing it. The most common way is
to look up a graph in a textbook with a chart that shows phase plots for many
values of {. Three asymptotic approximations are given here. We will use
the approximation that connects the the low frequency asymptote to the high
frequency asymptote starting at

w = o wo - 107¢
106
and ending at
W= wo - 10¢

Since ¢=0.2 in this case this means that the phase starts at 0° and then

breaks downward at w=wq/1 0%=7.9 rad/sec. The phase reaches -180° at
w=wq10%=12.6 rad/sec.
As a practical matter If (<0.02, the approximation can be simply a vertical

line at the break frequency. One advantage of this approximation is that it is
very easy to plot on semilog paper. Since the number 10-wy moves up by a

full decade from wy, the number 105w will be a fraction ¢ of a decade above
wq. For the example above the corner frequencies for ¢=0.1 fall near wgy one
tenth of the way between wq and wg/10 (at the lower break frequency) to one
tenth of the way between wg and wg-10 (at the higher frequency).

Phase of Underdamped (Complex) Poles: Follow the low frequency
asymptote at 0° until

wo

W= ——
10¢

then decrease linearly to meet the high frequency asymptote at -180° at
W= wp * 10¢

Other magnitude and phase approximations (along with exact expressions) are given here.

Key Concept: Bode Plot for Complex Conjugate Poles
» For the magnitude plot of complex conjugate poles draw a 0 dB at
low frequencies, go through a peak of height,

. 1 .
| H (jwo)| ~ 2% [H (jwo)lgp = —20 - logy, (2€)

https://lpsa.swarthmore.edu/Bode/Bode All.html
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at the break frequency and then drop at 40 dB per decade (i.e., the
slope is -40 dB/decade). The high frequency asymptote goes
through the break frequency. Note that in this approximation the
peak only exists for

0<(C<0.5
» To draw the phase plot simply follow low frequency asymptote at 0°
until
w
W= —2 — (-10"¢
10

then decrease linearly to meet the high frequency asymptote at -180°
at

w:wo-l()c

If ¢<0.02, the approximation can be simply a vertical line at the break
frequency.

» Note that the shape of the graphs (magnitude peak height, steepness
of phase transition) are determined solely by ¢, and the frequency at
which the magnitude peak and phase transition occur are determined
solely by wg.

Note: Other magnitude and phase approximations (along with exact expressions) are given
here.
The analysis given above assumes the ( is positive. For negative { see here

Interactive Demo

A Complex Conjugate Pair of Zeros

Not surprisingly a complex pair of zeros yields results similar to that for a
complex pair of poles. The magnitude and phase plots for the complex zero
are the mirror image (around 0dB for magnitude and around 0° for phase) of
those for the complex pole. Therefore, the magnitude has a dip instead of a
peak, the magnitude increases above the break frequency and the phase
increases rather than decreasing. The results will not be derived here, but

closely follow those for complex poles.
Note: The analysis given below assumes the ( is positive. For negative  see here

( Example: Complex Conjugate Zero

The graph below corresponds to a complex conjugate zero with wg=3,
(=0.25
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The dip in the magnitude plot will have a magnitude of 0.5 or -6 dB.
The break frequencies for the phase are at w=wq/1 0%=1.7 rad/sec and

w=wy'10%=5.3 rad/sec.
Magnitude Plot
60 — T —
50 [
40 +
_gg 30 F .",...
3
= ’o’
T 20
10
0 persssssnnanannnnnn e ................,,.... f:
-10
0.1 1 wg 10
Phase Plot
225 T -
406
w010
135 -
°
S g0f
T
N
45
0 l-l.-u--uuu--lll"""'“
¢
w0/10
-45 S
0.1 1 wy 10 100
w, rad/S
. )
Key Concept: Bode Plot of Complex Conjugate Zeros
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The plots for a complex conjugate pair of zeros are very much like

those for the poles but mirrored about 0dB or 0°.
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low frequencies, go through a dip of magnitude:
[ H (jwo)| = 2¢,  [H(jwo)l 45 =~ 20 - log;, (2¢)

at the break frequency and then rise at +40 dB per decade (i.e., the
slope is +40 dB/decade). The high frequency asymptote goes
through the break frequency. Note that the peak only exists for

0<C<0.5
» To draw the phase plot simply follow low frequency asymptote at 0°
until
w
w= el wo * 10~¢
10°¢

then increase linearly to meet the high frequency asymptote at 180°
at

w = wp - 10°

» Note that the shape of the graphs (magnitude peak height, steepness
of phase transition) are determined solely by ¢, and the frequency at
which the magnitude peak and phase transition occur are determined
solely by wg.

Note: Other magnitude and phase approximations (along with exact expressions) are given
here.
The analysis given below assumes the  is positive. For negative { see here.

Interactive Demo

Non-Minimum Phase Systems

All of the examples above are for minimum phase systems. These
systems have poles and zeros that do not have positive real parts. For
example the term (s+2) is zero when s=-2, so it has a negative real root. First
order poles and zeros have negative real roots if wg is positive. Second order

poles and zeros have negative real roots if C is positive. The magnitude plots
for these systems remain unchanged, but the phase plots are inverted. See
here for discussion.

Interactive Demos:

Below you will find interactive demos that show how to draw the asymptotic
approximation for a constant, a first order pole and zero, and a second order
(underdamped) pole and zero. Note there is no demo for a pole or zero at the
origin because these are always drawn in exactly the same way; there are no
variable parameters (i.e., wg or Q).
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Interactive Demo: Bode Plot of Constant Term

This demonstration shows how the gain term M:
affects a Bode plot. To run the demonstration 20
either enter the value of K, or IKI expressed in dB, 10
in one of the text boxes below. If you enter IKl in
dB, then the sign of K is unchanged from its " O fressesssssnnnnscsssinnninnnann.
current value. You can also set IKI and 4K by °
either clicking and dragging the horizontal lines E 10
on the graphs themselve. The magnitude of K = -20
must be between 0.01 and 100 (-40dB and
+40dB). The phase of K (.K) can only be 0° (fora ~ >°
positive value of K) or +1 BL(for negative K). _40 :
Enter a value for gain, K:  1.00 , 0.01 01
or enter IKI expressed in dB: | 0.00 dB.
225
K = 1.00 so the value of 180
Kgg = 20-logo(IKI) = 20-log1o(11.00l) = 0.00. 133
Or, given that Kyg = 0.00, IKI ° 45
3 0 |eessectessioririviobisdhoreasens
_ 10}$db/20 = 100-00/20 _ ¢ o | i _4(5)
The sign of K depends on phase, in this case K is 90
positive.and phase = 0°. 135
-180
-225 T
0.01 0.1

Note that for the case of a constant term, the

approximate (magenta line) and exact (dotted

black line) representations of magnitude and phsApprox - phsExac
phase are equal.

Interactive Demo: Bode Plot of a Real Pole

This demonstration shows how a first order M:
pole expressed as: 20
1 1 10
H(s) = =
(s) 14+ wio 1+ Jwio ’ L0
©
is displayed on a Bode plot. To change the value E -10
of wg, you can either change the value in the text = 90
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DOX, pbelow, or drag the vertical line snowmg ('00

on the graphs to the right. The exact values of %0
magnitude and phase are shown as black dotted -40 | T
lines and the asymptotic approximations are 0.01 0.1
shown with a thick magenta line. The value of w
is constrained such that 0.1<=w<10 rad/second.
45
@efiC
Enter a value for wy: 1.000
O
Asymptotic Magnitude: The asymptotic .
magnitude plot starts (at low frequencies) at0dB 35 45
and stays at that level until it gets to wg. At that ‘I?
point the gain starts dropping with a slope of 90

Rules for Constructing Bode Diagrams

f i r i i plots] [Making PIot] [Examples] [Drawing Tool]
BodePlotGui| [Rules Table| |Printable

This document will discuss how to actually draw Bode diagrams. It
consists mostly of examples.

Key Concept -
To draw Bode diagram there are four steps:

@ 3 » ¢

1. Rewrite the transfer function in proper form.

2. Separate the transfer function into its constituent parts.

3. Draw the Bode diagram for each part.

4. Draw the overall Bode diagram by adding up the results from part 3.

[

v

@

1. Rewrite the transfer function in proper form.

A transfer function is normally of the form:

b,
His) = K 22

I

> as
0

As discussed in the previous document, we would like to rewrite this so
the lowest order term in the numerator and denominator are both unity.

Some examples will clarify:

( Example 1 ]
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2. Separate the transfer function into its constituent
parts.

NO O~ WN =

Ipsa.swarthmore.edu/Bode/BodeAll.html
5 5

—+1 —+1
10 10
H(s) = 30— = 30—y 10 -6 L0
£+ 35+ 50 50 = 3 5
—+—z+1 —+—z+l1
50 50 500 30

Note that the final result has the lowest (zero) order power of

numerator and denominator polynomial equal to unity.

.

\
( E
xample 2
H b
5 5 1 1
H(s) = 30— = 30— 1 I —
5% + 35+ 50 50 = 3 5 3
—+—s5+1 —+—s+1
50 50 0 50
Note that in this example, the lowest power in the numerator was 1.
p
(
Example 3
5 +1
H(s) = 30 s+ 10 a0 1a 1n
{2+ 3(s+ 500 350 5 o2y
3 50
i+1
=3 10

In this example the denominator was already factored. In cases like

this, each factored term needs to have unity as the lowest order power of
s (zero in this case).

The next step is to split up the function into its constituent parts. There
are seven types of parts:

. A constant

. Poles at the origin

. Zeros at the origin

. Real Poles

. Real Zeros

. Complex conjugate poles
. Complex conjugate zeros

We can use the examples above to demonstrate again.

[

Example 1
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S +1 S
s+ 10 1 1
30 10 _g_ 10

H(s) = 30— —— = 30—
O =0 T s 50 57 3

—s5+1 —+—z+l1
50 50 50 50

This function has

- a constant of 6,

e azero at s=-10,

» and complex conjugate poles at the roots of s2+3s+50.

The complex conjugate poles are at s=-1.5 + j6.9 (where j=sqgrt(-1)). A
more common (and useful for our purposes) way to express this is to use
the standard notation for a second order polynomial

In this case
34/50
m, =+50=7.07, [=——=0.21
¢ 7 2.50
( Example 2
g s
5 5 1 T
H(s) = 30— =30yt o3 1
5+ 3s+ 50 50 s 3 ] 3
—+—s+1 —+—s+1
50 50 0050
This function has
« a constant of 3,
» a zero at the origin,
« and complex conjugate poles at the roots of s2+3s+50, in other
words
34/50
m, =~+50=7.0f/, [=——=0.21
¢ 7 2.50
.
( Example 3
s
—+1
His)= 30— 10 _5 10
{s+ 3z + 500 [E"'IJ[i"'IJ
3 50

This function has
« aconstant of 2,
» azero ats=-10, and
» poles at s=-3 and s=-50.
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3. Draw the Bode diagram for each part.

The rules for drawing the Bode diagram for each part are summarized on
a separate page. Examples of each are given later.

4. Draw the overall Bode diagram by adding up the
results from step 3.

After the individual terms are drawn, it is a simple matter to add them
together. See examples, below.

Examples: Draw Bode Diagrams for the following transfer
functions

These examples are compiled on the next page.

( Example 1

A simple pole

100

His) =
( s+30

Full Solution

Example 2

Multiple poles and zeros

H(s) =100 (SH} =100 (SH}
(s+m}(s+mﬂ) s +110s +1000
Full Solution
\_ J
( Example 3 )

A pole at the origin and poles and zeros

5410
H{s)=10
sf +3s
Full Solution
. J
( Example 4 )

Repeated poles, a zero at the origin, and a negative constant

s
s +128° +21s +10

H(s) =—100

https://lpsa.swarthmore.edu/Bode/Bode All.html
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Full Solution

Example 5

Complex conjugate poles

s+10

Hs)=30——— ~
(©) s +3s+50

Full Solution

Bode Plot Examples

i r i ic plots| [Making Plot| |Examples | |Drawing Tool
‘ BodePlotGui| [Rules Table| |Printable ] [ ] [ ] [ ]
4 Several examples of the construction of Bode plots are included here;
click on the transfer function in the table below to jump to that example.
» Examples (Click on Transfer Function)
& 1 2 3 4 5 45
3
o110 Lo, s+1 105410 =100 5——° 30310
LY <130 <2 +110s+1000| s+ 3s s +125" +21s+10| s°+3s+50 (
© |@areal (real poles and (pole at (repeat.ed real poles, |(complex con;.
pole) 26r0s) origin) negative constant) poles) c
ca
References

Rules for Drawing Bode Diagrams

‘ :Dy_auiatﬂ_[ﬁr i ]%Aﬂanu.taﬁic plots] [Making Plot] [Examples] [Drawing Tool]
BodePlotGui| [Summary| | Printable

4 The table below summarizes what to do for each type of term in a Bode
Plot. This is also available as a Word Document or PDF.
The table assumes wy>0. If wy<0, magnitude is unchanged, but phase is

reversed.

2 Term Magnitude Phase
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_ K>0: 0°
Constant: K 20log4(IKI) K<0- +18(
Pole at Origin _
-20 dB/decade passing -90°
1 through 0 dB at w=1
(Integrator) 9
Zero at Origin +20 dB/decade passing +90°

(Differentiator) s

through 0 dB at w=1
(Mirror image, around x
axis,of Integrator)

(Mirror image, ar
axis, of Integrator

1. Draw low frec

Real Pole 1. Draw low frequency asvmbtote at
asymptote at 0 dB. 5 DrZw%igh fre
1 2. Draw high frequency ' asymptote at
wio +1 ggggggfe at-20 3. Connect with
-~ straight line fi
3. Connect lines at wy,. 0.1-@n to 10~

- 10
1. Draw low frequency 1. 5;3%!?:{::;
Real Zero asymptote at 0 dB. 2. Draw high fre
2. Draw high frequency asymptote at
S 1 asymptote at +20 3. Connect with
w_o + dB/decade. straight line fi

3. Connect lines at wy.

(Mirror image, around x-
axis, of Real Pole)

0.1-wg to 10~

(Mirror image, ar
axis, of Real Pole .

Underdamped Poles

(Complex conjugate
poles)

1. Draw low frequency
asymptote at 0 dB.
2. Draw high frequency
asymptote at -40
dB/decade.
. Connect lines at wy.
4. If £<0.5, then draw
peak at wg with

amplitude

w

IH(jw)I=-20-10g10(27),
else don't draw peak
(it is very small).

1. Draw low frec
asymptote at
2. Draw high fre
asymptote at
3. Connect with

line from
w

w = -0 to
10¢

You can also look
textbook for exam

Underdamped Zeros

(Complex conjugate
Zeros)

S 2 S
<w—0) +2C<w—0> +1
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1. Draw low frequency
asymptote at 0 dB.
2. Draw high frequency
asymptote at +40
dB/decade.
. Connect lines at w,.
4. If £<0.5, then draw
peak at wg with

amplitude

w

IH(itA=+20-1004A(20).

1. Draw low frec
asymptote at
2. Draw high fre
asymptote at
3. Connect with

line from
w

w = =0 to
10¢
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TATTY/T T T uNTY YOou can aiso I00K
0<(¢<1 else don't draw peak textbook for exam
(it is very small). (Mirror image, ar
o axis, of Underdée

(Mirror image, around x- Pole)

axis, of Underdamped Pole)
For multiple order poles and zeros, simply multiply the slope of the

BodePlotGui: A Tool for Generating
Asymptotic Bode Diagrams

i r i i plots] [Making Plot] [Examples] [Drawing Tool]
BodePlotGui| [Rules Table| |Printable

BodePlotGui is a graphical user interface written in the MATLAB®
programming language. It takes a transfer function and splits it into its
constituent elements, then draws the piecewise linear asymptotic
approximation for each element. It is hoped that the BodePlotGui program
will be a versatile program for teaching and learning the construction of Bode
N diagrams from piecewise linear approximations.

O % » 4

&

Files for the program are found here.

Note: the MATLAB GUI doesn't display well on all devices (some
elements of the GUI may not show up). If you have this problem, simply run
the MATLAB command "guide" and open the fileBodePlotGui.fig. You can
edit the size and layout of the GUI for your machine. Save it, and then rerun
the BodePlotGui.m file.

| have stopped working on BodePlotGui and have developed a similar tool
in JavaScript to make it more accessible (see the "Drawing Tool" tab, above).
While MATLAB is extremely powerful, it is also very expensive.

Use of program.

( A Simple Example.

Consider the transfer function:

Hig) = 1000 —— =100 &
s+ 10 1

10

This function has three terms to be considered when constructing a
Bode diagram, a constant (100), a pole at w=10 rad/sec, and a zero at
the origin. The following MATLAB® commands begin execution of the
GUI:

(>>MySys=tf(1000* [1 01,[1 101); $define Xfar fundtior
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k >>BodePlotGui (MySys) %$Invoke GUI J

The GUI generates a window as shown below.

& Asymptotic Bode Plotter sy i SNSRI | S -

Help
1000 s
. E R e
Asvmptotic Bode Plot s + 10
Magnitude Plot Phase |
Eﬂ_
m o
= m_ dL_J
! o
= 3
= 1
c 20 @
] L th
o D"""""""_'_'ﬂ-“": """""""""""" _EEU
E vt () i o
_21] L} 5 _gu L
-40 - - - -1385 : :
10" 10° 10! 102 10° 107! 10° 10’
Frequency - w, rad-sec”’ Frequency - w
Elements included in plot Elements excluded from plot
Constant = 1e+02 (40 dB) phi=0 . 1

Real Pole at -10 s
Zero at origin

Select element to exclude from plot

Starting in the upper left and going counterclockwise, the windows show:

1. The magnitude plot, both the piecewise linear approximation for all three
terms as well as the asymptotic plot for the complete transfer function and the
exact Bode diagram for magnitude. Also shown is a zero reference line.

. The phase plot.

. Alist of the systems in the user workspace.

. Several checkboxes that let the user format the image. In particular there is a
check-box that determines whether or not to display the asymptotic plot for the
complete transfer function; sometimes it gets in the way of seeing the other
plots, so you may want to hide it.

5. The legend identifying individual terms on the plot.

6. A box that shows elements excluded from the plot. This box is empty in this

display because the diagram displays all three elements of the transfer
function.

-7 [, W | SR | B PG | S Y PN Ry DN | DR R ) Y P §
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8. Several check-boxes that allow the user to display how the plots are displayed
9. Also in the upper left is a "Help" tab.

Also shown in the upper right hand corner is the transfer function, H(s).

Modifying what is displayed

The function displayed can be manipulated term by term to illustrate the
effect of each term. For example, the zero at the origin can be excluded
simply by clicking on it in the lower left hand box. The figure below shows the
result.

r

':4? Asymptotic Bode Plotter

Help
1000
. Hig) = ————————
Asvmptotic Bode Plot s + 10
Magnitude Plot Phase Plot
80+ L
% a0
: 22 45
40
E & .
g: 20 W
451
© 0
=
20+ =80
-40 il ey AT Bt 135 I T e T ot e e
107! 10° 10! 102 10* 10! 10° 10’
Frequency - w, rad-sec”’ Frequency - w, rad-
Elements included in plot Elements excluded from plot
Constant = 1e+02 (40 dB) phi=0 F Zero at origin

Real Pole at -10

Select element to include in plot
Select element to exclude from plot

Note that the zero at the origin is no longer included in the plot. Each term
can be likewise included or excluded by simply clicking on it.

The next plot shows the plot modified to have thicker lines, a grid, phase
in radians and with the asymptotic plot of the complete transfer function. In
the previous graph, the phase of the asymptotic plot obscured that of the real
pole; this is an example when it might be convenient not to show the
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asymptotic approximation.

-
':4? Asymptotic Bode Plotter

Help
1000
) Hi{a) = ————————-
Asvmptotic Bode Plot N
Magnitude Plot Phase Plot
Eu_
tn
© 60
18 40
1=
2 ol _-“‘\.\‘
N L
00 essssannnnnnnnnnnnn,
= "t..
_21]_ 'i..... 0.5F
L ]
-40 sl Liil M ...*Ja -0.75 il M|
10" 10° 10! 102 10?107 10° 10!

Frequency - w, rad-sec”’

Frequency - w, rad-
Elements included in plot

Elements excluded from plot

Constant = 1e+02 (40 dB) phi=0 -
SEd Fok a8 1

Select element to include in plot
Select element to exclude from plot

Underdamped terms

Underdamped poles (and zeros) present a difficulty because they cause a
peak (dip) in the magnitude plot. The program show this with a simple circle
showing the peak height. For example the transfer function

1

His) = 4—+—
=) sty s+100

yields the output shown below. The peak due to the underdamped pole is
clearly shown.

4 Asymptotic Bode PIGttE:'* - * L |
Help
1
. Higs) = ————————————————
Asvmptotic Bode Plot a~Z + = + 100
Magnitude Plot Phase |
40 T 45 .
20l o J
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P
20} 5 -45}
-40 @Q
° 0l
.60 i
-BO | @ 135}
-100+ &
O 180}
-120
A0l L v 5}
10° 10° 10 102 10° 107! 10° 10
Frequency - w, rad-sec”’ Frequency - w
Elements included in plot Elements excluded from plot
Constant = 0.01 (40 dB) phi=0 . 1

Complex Pole at wn=10, zeta=0.05

Select element to exclude from plot

( A more complicated example h
The example below is more complicated. It shows underdamped
terms, repeated poles, and a pole at the origin.
& 45+ 50 s+ 5+ 50
His)=100 : = .
g + 200z + 10000s s{s+100%
\. J

T o ST h

Help

IVIEYTTUUE = UG

100 =~2 + 100 = + 501
. His) = ———————mmmmmmmmmm oo
Asvmptotic Bode Plot s~3 + 200 =~Z + 1000)
Magnitude Plot Phase |
140 . : 225 :
120 o+ 1B0 L groocrmocnoc:
L Pl 135} i
o0

[TTTERRRRR R RTTRRTR AR - PP
LI}

Fhase - degrees
=

Frequency - w, rad-sec’
Elements included in plot
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Make your own Bode plot paper

The code for BodePaper.m is available at
https://github.com/echeever/BodePlotGui

When making Bode plots one needs two pieces of semi-logarithmic paper,
one for the magnitude plot and one for the phase. The program described

here, BodePaper.m, can be used to make paper.

Download it and save it so

that MatLab can find it (from the Matlab menu you can go to File—Set Path
and include the directory where you stored the BodePaper.m file.) . There is
also a fine in the repository called BodeMagPaper.m that creates only a

magnitude plot.

The syntax for calling is given by the function's help file.

Vs

user.

om_lo the

>> help BodePaper

BodePaper is Matlab code to generate graph
two semilog graphs for making Bode plots.
units on the vertical axis is set to dB. T
units on the phase plot can be radians or
The default is degrees.

The correct calling syntax is:
BodePaper (om_lo, om hi, dB lo, dB hi, ph 1

low end of the frequency sca

rad/sec or Hz. No units are displa

om_hi the
dB_lo the
dB_hi the
ph_lo the
ph_hi the
UseRad an

high end of the frequency sc
bottom end of the dB scale.
top end of the dB scale.
bottom end of the phase scal
top end of the phase scale.
optional argument. If this a

on the phase plot are radians. If
or set to zero, the units are degr

paper fo
he top p
e bottom
egrees,

» ph_hi,
e. This

ed on th
le.

gument i
his argu
es.

To make paper that goes from 0.1 Hz to 100 Hz, with the magnitude scale
going from -60 to 40 dB and the phase from -180 to 90 degrees, the function

call would be

[>> BodePaper(0.1,100,-60,40,-180,90)

and the paper looks like:

40
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To change the units on phase the function call would be:

[ BodePaper (0.1,100,-60,40,-pi,pi/2,1)

and the paper now looks like this:

Bode Plot
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What Bode Plots Represent: The Frequency
Domain

i r i A i plots] [Making Plot] [Examples] [Drawing Tool]
BodePlotGui| |Rules Table| [ Printable

Contents
e Why Sine Waves?
¢ Determining system output given input and transfer function
o Interactive Demo
.Y o Things to try

@ ¢ » ¢

b

= Key Concept: It is useful to study the response of a system
to sinusoidal inputs

= Key Concept: The frequency response is shown with two
plots, one for magnitude and one for phase.

®

¢ An animation

Why Sine Waves?

One of the most commonly used test functions for a circuit or system is the sine (or
cosine) wave. This is not because sine waves are a particularly common signal. They
are in fact quite rare - the transmission of electricity (a 60 Hz sine wave in the U.S., 50
Hz in much of the rest of the world) is one example. The reason sine waves are
important is complex and involve a branch of Mathematics called Fourier Theory.
Briefly put: any signal going into a circuit can be represented by a sum of sinusoidal
waves of varying frequency and amplitude (often an infinite sum).

This is why sine waves are important. Not because they are common, but because
we can represent arbitrarily complex functions using only these very simple function.

Determining system output given input and transfer function

Given that sinusoidal waves are important, how can we analyze the response of a
circuit or system to sinusoidal inputs (after all transients have died out - the so-called
sinusoidal steady state)? There are many ways to do this, depending on your
mathematical sophistication. Let's use a fairly basic explanation that uses phasors. If
you are unfamiliar with phasors, a brief introduction is here. A technique using Laplace
Transforms is given here.

For a system of the type we are studying (linear constant coefficient) if the input to a
system is sinusoidal at a particular frequency, then the output of the system is also a
sinusoid at the same frequency, but typically with a different amplitude or phase. Put
another way, if the input to a system (described by the transfer function H(s)) is
A-cos(w-t+®) then the output is M-A-cos(w-t+d+0). This is likewise true for sine, since it

Alrmannhs A AAaAiaA it A =N vAAdiAKnA TAr NNON Thia iAa AlhAauinia lhalAu,
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|

Acos| ot + s M-Acos|et+p=6
[ 'iP] Sys{:cjl"n, f b }
Input H(s) Output

In this diagram the magnitude of the sinusoid has changed by a factor of M (which we
will take to be a positive real number) and the phase has changed by a factor of 6 (a
real number, not necessarily positive). It is our task to find the value of M and 6 for a
particular system, H(s), at a particular frequency, w. We call M the magnitude of the
system (or transfer function) at w, and we call 8 the phase of the system at that
frequency.

Using complex impedances it is possible to find the transfer function of a circuit. For
example, the circuit below is described by the transfer function, H(s), where s= jw.
Circuit Transfer Function

Consider the case where R=2MQ and C=1pF. In that case:

My T 0
W
é} JCE SR P EIC N
T Vin(s) 1+ sRC
T

1 . 1
H(s) = H(Jw):m

Generally we know the input Vj, and want to find the output V, ;. We can do this by

simple multiplication

1

Vout (jw) = Vip (jw) - H(jw) = Viy (jw) - 1+ 2w

If we have a phasor representation for the input and the transfer function, the
multiplication is simple (multiply magnitudes and add phases). Finding the output
becomes easy. Try it out.

Interactive Demo
Choose a transfer function.

@
1 .
H(s) = 15; H (jw) = 1+:;'2w
O
- 1.6 . o 1.6
H(s) = 52+0.55+1.6 H (jw) = (1.6—w?)+j(0.5-w)

Set input parameters,
Vin(t)=A-cos(w-t+®).

Setw: 1.000
0 em=@) 3
Qat A+ 1 A
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—ora R
0.0 @) 2
Set¢: 0 9

-180 @)
180

At w =1, H(jw) =1/(1.00 +
j2.00) = 0.45.-63.4° = M .0.
Since the input can be
represented as 1.0°,

The output is M-A.-(6+¢) =

0.45.-63.4°.
Magnitude | Phase D;I)-inn:aein

HGw) | 045 | -634° | 00000

Input 1 0° 1 '00695)1 1+

Output |  0.45 -63.4° O'f%%c?ig ; t

Directions for Use

Use the radio buttons to
choose a transfer function,
and the sliders to choose the
frequency, amplitude and
phase of the input (you can
also set frequency by
clicking and dragging in
either of the top two graphs.)

The paragraph below the
sliders goes through the
calculation of the numerical
value of the transfer function
at the chosen frequency, and
gives H(jw) in terms of
magnitude and phase. Note
that these are also shown on
the top two graphs by a dot.
To find the magnitude of the
output, simply multiply the
magnitude of the input (A) by
the magnitude of the transfer
function (M). The phase of
the output is sum of the input
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phase (q)) and the phase ot

the transfer function (8).

The bottom graph shows
input, Vi, (t) in black, and

Vout(t) in magenta. The

period, T (maroon), is shown
from one upward zero-
crossing of the input function
to the next (shown by black
dots). The delay T4 (green),

is shown from an upward
zero crossing of the input to
the next upward zero
crossing of the output (green
dot). The phase is negative
(since output lags input) and
equal to -T4/T-360°. So if the

delay was Ty=T/4 (i.e., one

quarter of a period) the
phase shift would be -90°)

[H{w)]

LHU(}J), °

Magnitude oi
1
0.4t
0 T
0 1
Phase of H
0
-45
-90

\/._.
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Vin(t)r Vout(t)
o

B period, T
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The Asymptotic Bode Diagram: Derivation of
Approximations

i r i A i plots] [Making Plot] [Examples] [Drawing Tool]
BodePlotGui | |Rules Table| [ Printable

Skip ahead to interactive demos.

Contents
e Introduction
o A Magnitude Plot
o A Phase Plot
= A more generic derivation
+ Making a Bode Diagram
o A Constant Term
= Magnitude
= Phase
= Example: Bode Plot of Gain Term
= Key Concept: Bode Plot of Gain Term
A Real Pole
= Magnitude
= Phase
= Example: Real Pole
= Example: Repeated Real Pole
= Key Concept: Bode Plot for Real Pole
= Aside: a different formulation of the phase approximation
A Real Zero
= Magnitude
= Phase
= Example: Real Zero
= Key Concept: Bode Plot of Real Zero:
A Pole at the Origin
= Magnitude
= Phase
= Example: Pole at Origin
= Key Concept: Bode Plot for Pole at Origin
A Zero at the Origin
= Example: Zero at Origin
= Key Concept: Bode Plot for Zero at Origin
A Complex Conjugate Pair of Poles
= Magnitude
= Phase

- WA MAanAAn + DAAA DIAt fAr NMArmAlAavy MAniliAaatA DAlAs
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o A Complex Conjugate Pair of Zeros

= Example: Complex Conjugate Zero

= Key Concept: Bode Plot of Complex Conjugate Zeros

¢ Non-Minimum Phase Systems
¢ Interactive Demos:

o Interactive Demo: Bode Plot of Constant Term

Interactive Demo: Bode Plot of a Real Pole

Interactive Demo: Bode Plot of a Real zero

Interactive Demo: Bode Plot of a Pair of Complex Conjugate Poles
Interactive Demo: Bode Plot of a Pair of Complex Conjugate Zeros

o

o

o

o

Skip ahead to interactive demos.

Introduction

Given an arbitrary transfer function, such as

100s + 100

H(s) =

s2 4+ 110s + 1000

if you wanted to make a mode plot you could calculate the value of H(s) over a

range of frequencies (recall s=j-w for a Bode plot), and plot them. This is what a
computer would naturally do. For example if you use MATLAB® and enter the

commands

[ >> mySys=t£(100*[1 1],[1 110 1000])
mySys =
100 s + 100

s*2 + 110 s + 1000
\>> bode (mySys)

J

you get a plot like the one shown below. The asymptotic solution is given elsewhere.

Bode Diagram
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However, there are reasons to develop a method for sketching Bode diagrams
manually. By drawing the plots by hand you develop an understanding about how the
locations of poles and zeros effect the shape of the plots. With this knowledge you can
predict how a system behaves in the frequency domain by simply examining its
transfer function. On the other hand, if you know the shape of transfer function that
you want, you can use your knowledge of Bode diagrams to generate the transfer
function.

The first task when drawing a Bode diagram by hand is to rewrite the transfer
function so that all the poles and zeros are written in the form (1+s/wg). The reasons
for this will become apparent when deriving the rules for a real pole. A derivation will

be done using the transfer function from above, but it is also possible to do a more
generic derivation. Let's rewrite the transfer function from above.

1 1+5/1
H(s) = 100 i — 100 o/
(5 + 10)(s + 100) 10- (1 + 5/10) - 100 - (1 + 5/100)

1+s/1

! (1+ s/10)(1 + s/100)

Now let's examine how we can easily draw the magnitude and phase of this function
when s=jw.

First note that this expression is made up of four terms, a constant (0.1), a zero (at
s=-1), and two poles (at s=-10 and s=-100). We can rewrite the function (with s=jw) as
four individual phasors (i.e., magnitude and phase), each phasor is within a set of
square brackets to make them more easily distinguished from each other..

1+ jw/1
(1 + jw/10)(1 + jw/100)

1+ jw/1[ £ (1 + jw/1)]

We will show (below) that drawing the magnitude and phase of each individual phasor
is fairly straightforward. The difficulty lies in trying to draw the magnitude and phase of
the more complicated function, H(jw). To start, we will write H(jw) as a single phasor:

TT/ 2. .\ /In1| |1+](U/1‘ \///n1\ | /(1 0 s/ /(1 0 21
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Ijw) = | |u.1 L \U.l)+ L \L+Jw/Ll) — £ \L+ Jw/ !
Jw) \l | ]1—|—jw/10|]1+jw/100]}\ \V-1) \ Jw/L) \ Jw/

= |H(jw)| £H(jw)

1+ jw/1]
1+ jw/10| [1 + jw/100]
/H(jw) = £(0.1) + £ (1 + jw/1) — £ (1 + jw/10) — Z (1 + jw/100)

|H(jw)| = |0.1]

Drawing the phase is fairly simple. We can draw each phase term separately, and then
simply add (or subtract) them. The magnitude term is not so straightforward because
the magnitude terms are multiplied, it would be much easier if they were added - then
we could draw each term on a graph and just add them. We can accomplish this by
usinga logarthmic scale (so multiplication and division become addition and
subtraction). Instead of a simple logarithm, we will use a deciBel (or dB) scale.

A Magnitude Plot

One way to transform multiplication into addition is by using the logarithm. Instead
of using a simple logarithm, we will use a deciBel (named for Alexander Graham Bell).
(Note: Why the deciBel) The relationship between a quantity, Q, and its deciBel
representation, X, is given by:

X =20- lOglO (Q)

So if Q=100 then X=40; Q=0.01 gives X=-40; X=3 gives Q=1.41; and so on.

If we represent the magnitude of H(s) in deciBels several things happen.

1+ jw/1]
1+ jw/10| |1 + jw/100]
1+ jw/1]
1+ jw/10| |1 + jw/100] )

[H(s)| = 10.1]

20 - logyo (|H(s)]) = 20 - logy (\o.lr

= 20 - logy, (|0.1]) + 20 - logy, (|1 + jw/1|) + 20 - logy, <’1—‘|‘

= 20 - logy (]0.1]) + 20 - logyg (|1 4 jw/1[) — 20 - logyq (|1 4 j

The advantages of using deciBels (and of writing poles and zeros in the form (1+s/wg))

are now revealed. The fact that the deciBel is a logarithmic term transforms the
multiplications and divisions of the individual terms to additions and subtsractions.
Another benefit is apparent in the last line that reveals just two types of terms, a
constant term and terms of the form 20-log10(I1+jw/wgl). Plotting the constant term is

trivial, however the other terms are not so straightforward. These plots will be
discussed below. However, once these plots are drawn for the individual terms, they

can simply be added together to get a plot for H(s).
https://lpsa.swarthmore.edu/Bode/Bode All.html
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A Phase Plot

If we look at the phase of the transfer function, we see much the same thing: The
phase plot is easy to draw if we take our lead from the magnitude plot. First note that
the transfer function is made up of four terms. If we want

/H(s) = £(0.1) + £ (1 + jw/1) — Z (1 + jw/10) — £ (1 + jw/100)
Again there are just two types of terms, a constant term and terms of the form (1+jw/w
o). Plotting the constant term is trivial; the other terms are discussed below.

A more generic derivation

The discussion above dealt with only a single transfer function. Another derivation
that is more general, but a little more complicated mathematically is here.

Making a Bode Diagram

Following the discussion above, the way to make a Bode Diagram is to split the
function up into its constituent parts, plot the magnitude and phase of each part, and
then add them up. The following gives a derivation of the plots for each type of
constituent part. Examples, including rules for making the plots follow in the next
document, which is more of a "How to" description of Bode diagrams.

A Constant Term

Consider a constantterm:H(s) = H(jw) = K

Magnitude

Clearly the magnitude is constant as w varies. |H (jw)| = | K|

Phase

The phase is also constant. If K is positive, the phase is 0° (or any even multiple of
180°, i.e., £360°). If Kis negative the phase is -180°, or any odd multiple of 180°. We
will use -180° because that is what MATLAB® uses. Expressed in radians we can say
that if K is positive the phase is 0 radians, if K is negative the phase is -7 radians.

Example: Bode Plot of Gain Term
H(s) = H (jw) =15
|H (jw)| = |15| = 15 = 23.5dB

JIT(4 N — /1K — N°
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The magnitude (in dB is calculated as

20 - log,, (15) = 23.5

Bode Diagram
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Key Concept: Bode Plot of Gain Term
For a constant term, the magnitude plot is a straight line.

The phase plot is also a straight line, either at 0° (for a positive constant) or
+180° (for a negative constant).

Interactive Demo ]

A Real Pole

Consider a simple real pole : H (s) = H (jw) =

1
1457 I+jgs
The frequency wy is called the break frequency, the corner frequency or the 3 dB
frequency (more on this last name later). The analysis given below assumes wg is

positive. For negative wq here.

Magnitude
The magnitude is given by
1
H (jw)| = ‘
[H (3)] 114+ 42 . .2
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| =~ " Jwy | \/12_’_(%)_
1

w 2

1+ (2)

Let's consider three cases for the value of the frequency, and determine the magnitude
in each case.:

|H (jw)‘dB = 20 - log;,

Case 1) w<<wg. This is the low frequency case with w/wy—0. We can write an

approximation for the magnitude of the transfer function:

3
w ; -
1+ <w_0> ~ 1, and [H (jw)|;5 ~ 20 - logy, (T) =0

This low frequency approximation is shown in blue on the diagram below.

Case 2) w>>wq. This is the high frequency case with w/wgy—ce. We can write an

approximation for the magnitude of the transfer function:

w 2 w 2 w
(&) =y (8) ~ &
. w
|H (jw)]4p ~ 20 - logyo ()
The high frequency approximation is at shown in green on the diagram below. Itis a

straight line with a slope of -20 dB/decade going through the break frequency at 0 dB
(if w=wq the approximation simplifies to 0 dB; w=10-w( gives an approximate gain of

0.1, or -20 dB and so on). That is, the approximation goes through 0 dB at w=w, and

for every factor of 10 increase in frequency, the magnitude drops by 20 dB..

Case 3) w=w,. At the break frequency

1 1
H (jwy = 20 - log =20 - log (—) ~ —3dB
|H (jwo)lsp 10 10 NG

,/1+(Z—§)2

This point is shown as a red circle on the diagram.

To draw a piecewise linear approximation, use the low frequency asymptote up to
the break frequency, and the high frequency asymptote thereafter.

Magnitude of Simple Real Pole

Asymptotic approximatfon
/(transparent magenta line)
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(dotted line)
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-20
Low frequency asymptote
(blue line at 0dB)
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(green line at -20dB/dec,
a0l ... throughOdBatwzwg) | o, L. L.
0.1 1 10 wg 100 1000
w, rad/S

The resulting asymptotic approximation is shown highlighted in transparent magenta.
The maximum error between the asymptotic approximation and the exact magnitude
function occurs at the break frequency and is approximately -3 dB.

Magnitude of a real pole: The piecewise linear asymptotic Bode plot for magnitude is
at 0 dB until the break frequency and then drops at 20 dB per decade as frequency
increases (i.e., the slope is -20 dB/decade).

Phase

The phase of a single real pole is given by is given by

. 1 .
JHGw) =/ [—2 ) = - (1 i Ji) _ t(i>

1 + JUJ_O Wy Wy
Let us again consider three cases for the value of the frequency:

Case 1) w<<wg. This is the low frequency case with w/wy—0. At these frequencies
We can write an approximation for the phase of the transfer function

ZH (jw) ~ —arctan(0) = 0° = 0 rad

The low frequency approximation is shown in blue on the diagram below.

Case 2) w>>wg. This is the high frequency case with w/wg—. We can write an

approximation for the phase of the transfer function
. o T
/H (jw) ~ — arctan(oo) = —90° = ey rad

The high frequency approximation is at shown in green on the diagram below. Itis a
horizontal line at -90°.
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Case 3) w=w,. The break frequency. At this frequency

/H (jw) = — arctan(1) = —45° = —% rad

This point is shown as a red circle on the diagram.

Angle of Simple Real Pole

45 T T Ty T o T | LRI | T T
Asymptotic approximation
(transparent magenta line
-45° at w=w =30 rad/sec
o
- Exact function / /
3 45h (dotted line) -
I
N
Low frequency asymptote
(blue line at 0°)
-90 / "
High frequency asymptote
. . (green line at -9|O°) . .
0.1 1 0.1-w, 10 wg 100 10-w, 1000

w, rad/S

A piecewise linear approximation is not as easy in this case because the high and
low frequency asymptotes don't intersect. Instead we use a rule that follows the exact
function fairly closely, but is also somewhat arbitrary. Its main advantage is that it is
easy to remember.

Phase of a real pole: The piecewise linear asymptotic Bode plot for phase follows the
low frequency asymptote at 0° until one tenth the break frequency (0.1-wg) then

decrease linearly to meet the high frequency asymptote at ten times the break
frequency (10-wg). This line is shown above. Note that there is no error at the break

frequency and about 5.7° of error at 0.7-wp and 10-w, the break frequency.

( Example: Real Pole )

The first example is a simple pole at 5 radians per second. The asymptotic
approximation is magenta, the exact function is a dotted black line.

Maanitude Plot
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Example: Repeated Real Pole

The second example shows a double pole at 30 radians per second. Note that
the slope of the asymptote is -40 dB/decade and the phase goes from 0 to -180°.
The effect of repeating a pole is to double the slope of the magnitude to -40
dB/decade and the slope of the phase to -90°/decade.
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Magnitude Plot
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Key Concept: Bode Plot for Real Pole
For a simple real pole the piecewise linear asymptotic Bode plot for magnitude

is at 0 dB until the break frequency and then drops at 20 dB per decade (i.e.,

the slope is -20 dB/decade). An nt order pole has a slope of -20-n
dB/decade.
The phase plot is at 0° until one tenth the break frequency and then drops

linearly to -90° at ten times the break frequency. An nt" order pole drops to
-90°-n.

The analysis given above assumes w is positive. For negative w, here.
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Interactive Demo

Aside: a different formulation of the phase approximation

There is another approximation for phase that is occasionally used. The
approximation is developed by matching the slope of the actual phase term to
that of the approximation at w=wq. Using math similar to that given here (for the

underdamped case) it can be shown that by drawing a line starting at 0° at
w=wy/e™P=wy/4.81 (or wy-e™?) to -90° at w=w,-4.81 we get a line with the
same slope as the actual function at w=w,. The approximation described

previously is much more commonly used as is easier to remember as a line
drawn from 0° at wg/5 to -90° at wy-5, and easier to draw on semi-log paper. The

latter is shown on the diagram below.
Exact and Approximate Phase (matching slope at “’o)
45 ———r R e -

Approximate

0 s

2 H(jw), °
A
a

©
o
T

1052 107" 10° 10"
w/wo, rad/S

Although this method is more accurate in the region around w=w, there is a
larger maximum error (more than 10°) near wg/5 and wg'5 when compared to
the method described previously.

10*

A Real Zero

The piecewise linear approximation for a zero is much like that for a pole Consider

a simple zero: H(s) =1+ wio,

Magnitude

The develooment of the maanitude blot for a zero fol
https://lpsa.swarthmore.edu/Bode/Bode All.html
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- e B - R

the previous section for details. The magnitude of the zero is given by

. . W
H ()] = |+ 52
Wo

Again, as with the case of the real pole, there are three cases:

1. At low frequencies, w<<wg, the gain is approximately 1 (or O dB).
2. At high frequencies, w>>w, the gain increases at 20 dB/decade and goes through the

break frequency at 0 dB.
3. At the break frequency, w=w, the gain is about 3 dB.

Magnitude of a Real Zero: For a simple real zero the piecewise linear asymptotic
Bode plot for magnitude is at 0 dB until the break frequency and then increases at 20
dB per decade (i.e., the slope is +20 dB/decade).

Phase
The phase of a simple zero is given by:

w

/H (jw) = £ (1 ”w%) — arctan(—)

Wo

The phase of a single real zero also has three cases (which can be derived similarly to
those for the real pole, given above):

1. At low frequencies, w<<wg, the phase is approximately zero.
2. At high frequencies, w>>w, the phase is +90°.
3. At the break frequency, w=wg, the phase is +45°.

Phase of a Real Zero: Follow the low frequency asymptote at 0° until one tenth the
break frequency (0.1 wg) then increase linearly to meet the high frequency asymptote

at ten times the break frequency (10 wg).

Example: Real Zero

This example shows a simple zero at 30 radians per second. The asymptotic
approximation is magenta, the exact function is the dotted black line.

H(s) =1+ =
(s) =1+ 35

Magnitude Plot

40 S e,

20
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Key Concept: Bode Plot of Real Zero:
« The plots for a real zero are like those for the real pole but mirrored about 0dB

or 0°.

« For a simple real zero the piecewise linear asymptotic Bode plot for magnitude
is at 0 dB until the break frequency and then rises at +20 dB per decade (i.e.,
the slope is +20 dB/decade). Ann t order zero has a slope of +20-n
dB/decade.

» The phase plot is at 0° until one tenth the break frequency and then rises

linearly to +90° at ten times the break frequency. An nt order zero rises to
+90°n.

The analysis given above assumes the w is positive. For negative wg here.

Interactive Demo

- -= P
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A Pole at the Origin

A pole at the origin is easily drawn exactly. Consider

1 1 J
H(s)=—, H(jw)=—=—-—
() =5 H(w)=— ==
Magnitude
The magnitude is given by

. jl_ 1

H ()| = |- 2 = =

w w

) 1
|H(Jw)|dB = 20 - logy <E> = —20 - logy, (w)

In this case there is no need for approximate functions and asymptotes, we can plot
the exact funtion. The function is represented by a straight line on a Bode plot with a
slope of -20 dB per decade and going through 0 dB at 1 rad/ sec. It also goes through
20 dB at 0.1 rad/sec, -20 dB at 10 rad/sec... Since there are no parameters (i.e., wg)

associated with this function, it is always drawn in exactly the same manner.

Magnitude of Pole at the Origin: Draw a line with a slope of -20 dB/decade that goes
through 0 dB at 1 rad/sec.

Phase

The phase of a simple zero is given by (H(jw) is a negative imaginary number for all
values of w so the phase is always -90°):

ZH (jw) = /£ (—i> — —90°

Phase of pole at the origin: The phase for a pole at the origin is -90°.

( Example: Pole at Origin

This example shows a simple pole at the origin. The exact (dotted black line) is
the same as the approximation (magenta).

Magnitude Plot
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Key Concept: Bode Plot for Pole at Origin

No interactive demo is provided because the plots are always drawn in the same way.
» For a simple pole at the origin draw a straight line with a slope of -20 dB per

decade and going through 0 dB at 1 rad/ sec.
e The phase plot is at -90°.
o The magnitude of an nt order pole has a slope of -20-n dB/decade and a

constant phase of -90°-n.

A Zero at the Origin

A zero at the origin is just like a pole at the origin but the magnitude increases with
increasing w, and the phase is +90° (i.e. simply mirror the graphs for the pole around

the origin around 0dB or 0°).

( Example: Zero at Origin \
68/96
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This example shows a simple zero at the origin. The exact (dotted black line) is
the same as the approximation (magenta).
Magnitude Plot
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Key Concept: Bode Plot for Zero at Origin
» The plots for a zero at the origin are like those for the pole but mirrored about

0dB or 0°.

« For a simple zero at the origin draw a straight line with a slope of +20 dB per
decade and going through 0 dB at 1 rad/ sec.

o The phase plot is at +90°.
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« The magnitude of an nt" order zero has a slope of +20-n dB/decade and a
constant phase of +90°n.

A Complex Conjugate Pair of Poles

The magnitude and phase plots of a complex conjugate (underdamped) pair of poles
is more complicated than those for a simple pole. Consider the transfer function (with
0<C<1):

w? 1

2 2 2
82 + 2¢wos + w; (i) +2<(wi0>+1

wo

The analysis given below assumes the ( is positive. For negative { see here.

Magnitude

The magnitude is given by

H(jw)| = |———— - -

2\ 2 5
H (jw)lqp = —20 - logy, (1 B (Wio) ) T <2Cwi0>

As before, let's consider three cases for the value of the frequency:

Case 1) w<<wg. This is the low frequency case. We can write an approximation for
the magnitude of the transfer function

|H(jw)|p = —20-logy (1) =0

The low frequency approximation is shown in red on the diagram below.

Case 2) w>>w(. This is the high frequency case. We can write an approximation
for the magnitude of the transfer function

https://lpsa.swarthmore.edu/Bode/Bode All.html
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2
w w
H(j =-20-1 — = —-40-1 —
| (Jw)|d3 08210 ((wo) ) 0810 (w())

The high frequency approximation is at shown in green on the diagram below. Itis a
straight line with a slope of -40 dB/decade going through the break frequency at 0 dB.
That is, for every factor of 10 increase in frequency, the magnitude drops by 40 dB.

Case 3) w=w. It can be shown that a peak occurs in the magnitude plot near the

break frequency. The derivation of the approximate amplitude and location of the peak
are given here. We make the approximation that a peak exists only when

0<(<0.5
and that the peak occurs at wg with height 1/(2:C).

To draw a piecewise linear approximation, use the low frequency asymptote up to
the break frequency, and the high frequency asymptote thereafter. If (<0.5, then draw
a peak of amplitude 1/(2-¢) Draw a smooth curve between the low and high frequency
asymptote that goes through the peak value.

As an example for the curve shown below wy=10, {=0.1,

1 1 1

5 p—
s_+002 3+1 S 2 S S 2 S
100 C (E) + 0.2 (E) +1 (w_o) + 2(: (w—()) +1

The peak will have an amplitude of 1/(2:¢)=5.00 or 14 dB.

Magnitude of Complex Conjugate Poles

20 T T ma T
Exact function / 14dB at w=w,
(dotted line) 3
10 2 Asymptotic approximation }
(transparent magenta line)
0
10 4
o
2
3 -20r T
f Low frequency asymptote
- (blue line at 0dB)
-30 4
-40 High frequency asymptote .
(green line ‘at -40dB/dec,
50 | through 0dB: at w=w0) |
'60 i L P S R | L L PR A | L I T R L I R R R
0.1 1 wg 100 1000

w. rad/S
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The resulting asymptotic approximation is shown as a black dotted line, the exact

response is a black solid line.

Magnitude of Underdamped (Complex) poles: Draw a 0 dB at low frequencies until
the break frequency, wg, and then drops with a slope of -40 dB/decade. If {<0.5 we

draw a peak of height at w, otherwise no peak is drawn.
o1 . N
| H (jwo)| ~ 2% |H (jwo)|yp =~ —20 - logy, (2€)
Note: The actual height of the peak and its frequency are both slightly less than the approximations given

above. An in depth discussion of the magnitude and phase approximations (along with some alternate
approximations) are given here.

Phase

The phase of a complex conjugate pole is given by is given by

. 2 .
AH(jw)zé 1 =/ (£> +2C<£>+1 =/
Jjw 2 Jw wo wWo
(&) +2¢ (%) +1
24%0
= — arctan

o\ 2
1- ()
Let us again consider three cases for the value of the frequency:

Case 1) w<<wg. This is the low frequency case. At these frequencies We can write
an approximation for the phase of the transfer function

2
/H (jw) =~ — arctan(%) ~ —arctan(0) = 0° = 0 rad
0

The low frequency approximation is shown in red on the diagram below.

Case 2) w>>w(. This is the high frequency case. We can write an approximation

for the phase of the transfer function
/H (jw) ~ —180° = —m rad

Note: this result makes use of the fact that the arctan function returns a result in quadrant 2 since the
imaginary part of H(j&omega;) is negative and the real part is positive.

The high frequency approximation is at shown in green on the diagram below. Itis a
straiaht line at -180°.
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Case 3) w=w,. The break frequency. At this frequency

ZH(]WQ) == —900

The asymptotic approximation is shown below for wy=10, {=0.1, followed by an

explanation

1

1

H(s)

45 — :

s2 - 2
— +0.02¢s + 1 s s
100 ¢ (35) +02(55) +1

Angle of Complex Conjugate Poles

wy10%7.6-7
0 \ ....................
45 | Low frequency asymptote |
R (blue line at 0°)
5: Asymptotic approximation
% -90 Exact function @ (transparent magenta line) 7
N (dotted line) / H High frequency asymptote
135 | H (green line at -90°) |
-90° at w=wg B
-1 80 llllllllllllllllll
wy 102126
_225 L L P A | I.II/. L 1l M
0.1 1 wg 100 1000
w, rad/S

A piecewise linear approximation is a bit more complicated in this case, and there
are no hard and fast rules for drawing it. The most common way is to look up a graph
in a textbook with a chart that shows phase plots for many values of . Three
asymptotic approximations are given here. We will use the approximation that
connects the the low frequency asymptote to the high frequency asymptote starting at

w= Sl wo - 10~¢
106
and ending at
w = wo 10¢

https://lpsa.swarthmore.edu/Bode/Bode All.html
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Since ¢=0.2 in this case this means that the phase starts at 0° and then breaks
downward at w=w/10%=7.9 rad/sec. The phase reaches -180° at w=w(10%=12.6

rad/sec.

As a practical matter If (<0.02, the approximation can be simply a vertical line at the
break frequency. One advantage of this approximation is that it is very easy to plot on
semilog paper. Since the number 10-wy moves up by a full decade from w, the
number 105-(»0 will be a fraction ¢ of a decade above wg. For the example above the
corner frequencies for ¢=0.1 fall near wg one tenth of the way between wg and wg/10
(at the lower break frequency) to one tenth of the way between wgy and wg-10 (at the

higher frequency).

Phase of Underdamped (Complex) Poles: Follow the low frequency asymptote at 0°
until

wWo

106
then decrease linearly to meet the high frequency asymptote at -180° at
w=uwp - 10¢

Other magnitude and phase approximations (along with exact expressions) are given here.

Key Concept: Bode Plot for Complex Conjugate Poles
» For the magnitude plot of complex conjugate poles draw a 0 dB at low
frequencies, go through a peak of height,

1
2¢’

|H (jwo)| ~ |H (jwo)| 45 = —20 - logy, (2¢)

at the break frequency and then drop at 40 dB per decade (i.e., the slope is -40
dB/decade). The high frequency asymptote goes through the break
frequency. Note that in this approximation the peak only exists for

0<(<0.5

To draw the phase plot simply follow low frequency asymptote at 0° until

w= adh = w - 10~¢
10¢

then decrease linearly to meet the high frequency asymptote at -180° at

w = wp - 10°

If ¢<0.02, the approximation can be simply a vertical line at the break

frequency.
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» Note that the shape of the graphs (magnitude peak height, steepness of phase
transition) are determined solely by ¢, and the frequency at which the
magnitude peak and phase transition occur are determined solely by w.

Note: Other magnitude and phase approximations (along with exact expressions) are given here.
The analysis given above assumes the ( is positive. For negative { see here

Interactive Demo

A Complex Conjugate Pair of Zeros

Not surprisingly a complex pair of zeros yields results similar to that for a complex
pair of poles. The magnitude and phase plots for the complex zero are the mirror
image (around 0dB for magnitude and around 0° for phase) of those for the complex
pole. Therefore, the magnitude has a dip instead of a peak, the magnitude increases
above the break frequency and the phase increases rather than decreasing. The

results will not be derived here, but closely follow those for complex poles.
Note: The analysis given below assumes the ( is positive. For negative { see here

( Example: Complex Conjugate Zero )
The graph below corresponds to a complex conjugate zero with wy=3, (=0.25
s \° S
- (2) v ()
Wo wo
The dip in the magnitude plot will have a magnitude of 0.5 or -6 dB. The break
frequencies for the phase are at w=wy/10%=1.7 rad/sec and w=w,-10%=5.3 rad/sec.
Magnitude Plot
60 ————— —— —————s
50 &
40 -
B 30+ .“‘o» |
’g 0"”‘
= o
I 20 .
10 i
Q prrssssssannannnnns -...-.-..........,,,""“... ::: .
_10 i L i I R S R | L .“‘I L I S S T | L L PR
0.1 1 wg 10 100
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Phase Plot
225 —— :
w10
180 - ““‘““““"......“-uu--uu--l lllll EEEEEEERERRERRRNE -
135 F .
S 90 —
T
N
45 - i
0 TYTTLLLLLLLILE FPPETTL e -
w,/10°
_45 L L MR Il Il L Fa
0.1 1 wg 10 100 1000
w, rad/S
L J
Key Concept: Bode Plot of Complex Conjugate Zeros
» The plots for a complex conjugate pair of zeros are very much like those for the

poles but mirrored about 0dB or 0°.
» For the magnitude plot of complex conjugate zeros draw a 0 dB at low
frequencies, go through a dip of magnitude:
| H (jwo) |45 ~ 20 - logyg (2)

| H (jwo)| = 2¢,
at the break frequency and then rise at +40 dB per decade (i.e., the slope is

+40 dB/decade). The high frequency asymptote goes through the break
frequency. Note that the peak only exists for

0<C<05
« To draw the phase plot simply follow low frequency asymptote at 0° until

W,
0 — - -10°¢

w =
106
then increase linearly to meet the high frequency asymptote at 180° at
w=wp-* 10¢

» Note that the shape of the graphs (magnitude peak height, steepness of phase
transition) are determined solely by ¢, and the frequency at which the

magnitude peak and phase transition occur are determined solely by w.
76/96

Note: Other magnitude and phase approximations (along with exact expressions) are given here.

The analysis given below assumes the ( is positive. For negative { see here.
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Interactive Demo

Non-Minimum Phase Systems

All of the examples above are for minimum phase systems. These systems have
poles and zeros that do not have positive real parts. For example the term (s+2) is zero
when s=-2, so it has a negative real root. First order poles and zeros have negative
real roots if wg is positive. Second order poles and zeros have negative real roots if { is

positive. The magnitude plots for these systems remain unchanged, but the phase
plots are inverted. See here for discussion.

Interactive Demos:
Below you will find interactive demos that show how to draw the asymptotic
approximation for a constant, a first order pole and zero, and a second order
(underdamped) pole and zero. Note there is no demo for a pole or zero at the origin
because these are always drawn in exactly the same way; there are no variable
parameters (i.e., wg or Q).

Interactive Demo: Bode Plot of Constant Term

This demonstration shows how the gain term affects M:

a Bode plot. To run the demonstration either enter the 20
value of K, or IKI expressed in dB, in one of the text
boxes below. If you enter IKI in dB, then the sign of K is
unchanged from its current value. You can also set IKI 0 |[e——
and K by either clicking and dragging the horizontal
lines on the graphs themselve. The magnitude of K must
be between 0.01 and 100 (-40dB and +40dB). The -20
phase of K (LK) can only be 0° (for a positive value of K)

-10

[H(jw)|, dB

or £180° (for negative K). ~30
Enter a value for gain, K:  1.00 , ~40 |
0.01 0.1
or enter IKl expressed in dB:  0.00 dB.
K =1.00 so the value of 225
KdB = 20|Og1o(|K|) = 20'0910('1 OOl) = 0.00. 180
135
Or, given that Kyg = 0.00, IKI = 10Kdb/20 — 1000720 _ q 0
The sign of K depends on phase, in this case K is ° 45
positive.and phase = 0°. 3 () |——mm——
T 45
-90
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Note that for the case of a constant term, the

-130

-180
approximate (magenta line) and exact (dotted black line) 225 | :
representations of magnitude and phase are equal. 0.01 0.1
phsApprox == phsExaci
Interactive Demo: Bode Plot of a Real Pole
This demonstration shows how a first order pole M:
expressed as: 20
1 1 10
H(S) = 1 S = 1 s w )
+ w_o ‘I‘ W_O o O ferererererss
-O_
is displayed on a Bode plot. To change the value of wg, g -10
you can either change the value in the text box, below, = -20
or drag the vertical line showing wg on the graphs to the
-30
right. The exact values of magnitude and phase are
shown as black dotted lines and the asymptotic -40 I
approximations are shown with a thick magenta line. 0.01 0.1
The value of wq is constrained such that 0.1<w<10
rad/second.
45
Enter a value for wy: 1.000 /10
Asymptotic Magnitude: The asymptotic magnitude 0 [
plot starts (at low frequencies) at 0 dB and stays atthat -
level until it gets to wg. At that point the gain starts 3 .45
I
dropping with a slope of -20 dB/decade. N
Asymptotic Phase: The asymptotic phase plot ~90
starts (at low frequencies) at 0° and stays at that level
until it gets to 0.1-wq (0.1 rad/sec). At that point the -135 T
phase starts dropping at -45°/decade until it gets to -90° 0.01 0.1
at 10-wg (10 rad/sec), at which point it becomes
constant at -90° for high frequencies. Phase goes phsApprox -+ phsExaci

through -45° at w=w,.

we/10 | wg | 10-wg

0.10 | 1.00 | 10.00
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Interactive Demo: Bode Plot of a Beal zero

This demonstration shows how a first order zero M:
expressed as: 40
S o) 30
H(s)=1+—=1+j—,
Wy wWo
o 20
©
is displayed on a Bode plot. To change the value of wg, = 4
3
you can either change the value in the text box, below, I
or drag the vertical line showing wg on the graphs to the O [T
right. The exact values of magnitude and phase are -10
shown as black dotted lines and the asymptotic 20
approximations are shown with a thick magenta line. 001 0'1
The value of wg is constrained such that 0.1=wy=<10 ' '
rad/second.
Enter a value for w,: 1.000 | 135 @10
Asymptotic Magnitude: The asymptotic magnitude 90

nlnt ctarte (at Inww franiianriac) at N AR anA ctave at that
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Rules for Constructing Bode Diagrams

i r i i plots] [Making Plot] [Examples] [Drawing Tool]
BodePlotGui| |Rules Table| | Printable

This document will discuss how to actually draw Bode diagrams. |t consists mostly
of examples.

Key Concept -
To draw Bode diagram there are four steps:

@ ¢ » ¢

[

1. Rewrite the transfer function in proper form.

.Y 2. Separate the transfer function into its constituent parts.
3. Draw the Bode diagram for each part.
0 4. Draw the overall Bode diagram by adding up the results from part 3.

1. Rewrite the transfer function in proper form.

A transfer function is normally of the form:

ihms‘“
His) = K X2

h

> ad
P

As discussed in the previous document, we would like to rewrite this so the lowest
order term in the numerator and denominator are both unity.

Some examples will clarify:

( Example 1 )

—S+1 —S+1
10 10
H(s) = 30— = 30— 10 — 610
£+ 3z+ 50 50 s 3 g
— —+—z+1

+—z+1
5050 50 30

Note that the final result has the lowest (zero) order power of numerator and
denominator polynomial equal to unity.

Q J
( Example 2 )
s s
5z 5 1 1
H(s) = 30— =30 =3
() g + 35+ 50 Sﬂi 3 fo3

+—:+1 S—+—s+1
50 50 50 50

Note that in this example, the lowest power in the numerator was 1.
- J
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2. Separate the transfer function into its constituent parts.

NOoOOoh~rWN =

Ipsa.swarthmore.edu/Bode/BodeAll.html

Example 3
: +1
H(s) = 30 s+10 a0 1a 10
{2+ 3(s+ 500 350 LRI
3 50
2
=7 10

In this example the denominator was already factored. In cases like this, each
factored term needs to have unity as the lowest order power of s (zero in this
case).

.

The next step is to split up the function into its constituent parts. There are seven

types of parts:

. A constant
. Poles at the origin
. Zeros at the origin
. Real Poles
. Real Zeros

. Complex conjugate poles
. Complex conjugate zeros

We can use the examples above to demonstrate again.

( Example 1

—S+1 —S+1

10 10
Hs) = 30r = 30— 10 —6 10
£+ 3z+ 50 50 s 3 5 3
—+—35+1 —+—s+1
50 A0 500 50

This function has
e aconstant of 6,
e azero at s=-10,

» and complex conjugate poles at the roots of s2+3s+50.
The complex conjugate poles are at s=-1.5 + j6.9 (where j=sqrt(-1)). A more

common (and useful for our purposes) way to express this is to use the standard
notation for a second order polynomial

In this case

https://lpsa.swarthmore.edu/Bode/Bode All.html

81/96



Ipsa.swarthmore.edu/Bode/BodeAll.html

3/7/25,8:16 AM
0, =~90=7.07, C =% =0.21

\\
( Example 2 )
g g
5 5 1 1
His)= 30— =30y L 31
£+ 35+ 50 50 = 3 5 3
—+—:z+1 —+ —z+l1
50 50 50 50

This function has
 aconstant of 3,
« a zero at the origin,
» and complex conjugate poles at the roots of s2+3s+50, in other words
3450
2-50

0, =+50=7.07, [=—n=0.21

.
( Example 3 )
—+1
Higj= 30— 10 _5 10
{2+ D5+ 5070 [E_HJ[i_HJ
3 a0

This function has
e a constant of 2,
e azero at s=-10, and
e poles at s=-3 and s=-50.
J

3. Draw the Bode diagram for each part.
The rules for drawing the Bode diagram for each part are summarized on a separate

page. Examples of each are given later.

4. Draw the overall Bode diagram by adding up the results

from step 3.
After the individual terms are drawn, it is a simple matter to add them together. See

examples, below.

Examples: Draw Bode Diagrams for the following transfer functions

These examples are compiled on the next page.

( Example 1
82/96
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A simple pole

100

His) =
s+ 30

Full Solution

Example 2

Multiple poles and zeros

(s+‘|ﬂ)(s+‘|i}ﬂ)_ s2 +110s +1000

H(s) =100 (s+1) 10051

Full Solution

Example 3

A pole at the origin and poles and zeros

s+10

sf +3s

His)=10

Full Solution

Example 4

Repeated poles, a zero at the origin, and a negative constant

s
s +12s° +21s+10

H(s) =-100

Full Solution

Example 5

Complex conjugate poles

s+10

His)=30—=— ~
s +3s+50

Full Solution

Example 6

A complicated function
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Bode Plot Examples

i r i i plots] [Making Plot] [Examples} [Drawing Tool]
BodePlotGui| |Rules Table| | Printable

Several examples of the construction of Bode plots are included here; click on the
transfer function in the table below to jump to that example.

Examples (Click on Transfer Function)

@ ¢ » ¢

6
1 2 3 4 5 452 +s+25
3 2
s +100s
o 1100 |, s+ 105410 =100 _s+10
S |5130|  s?+110s+1000 s+ 3s S 1257 +21s+10) 7 +3s+50) (1 itiple
, oles at
(repeated real poles, |(complex con;. poles
0 (areall  (real poles and (pqle at negative constant) poles) ongin,
pole) zeros) origin) complex
conj zeros)
References
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(Rules for Drawing Bode Diagrams

mﬁﬂiﬁrm &mic plots] [Making Plot] [Examples] [Drawing Tool]

The table below summarizes what to do for each type of term in a Bode Plot. This is
also available as a Word Document or PDF.
The table assumes wp>0. If wy<0, magnitude is unchanged, but phase is reversed.

Term Magnitude Phase
_ K>0: 0°
Constant: K 20log1q(IKT) K<O- +180°

Pole at Origin ,

-20 dB/decade passing -90°
1 through 0 dB at w=1
(Integrator)

Zero at Origin +20 dB/decade passing +90°

(Differentiator) s

through 0 dB at w=1
(Mirror image, around x
axis,of Integrator)

(Mirror image, around x
axis, of Integrator about )

1. Draw low frequency

1. Draw low frequency

Real Pole asymptote at 0°
asymptpte at 0 dB. 2. Draw high frequency
1 2. Draw high frequency asymptote at -90°
3 asymptote at -20 3. Connect with
wo +1 dB/decade. . strai ?1’[ line frgm
3. Connect lines at wy. 0 1.30 to 10-wg
1. Draw low frequency 1 gsr;m;?:grsﬁgf ney
Real Zero asymptote at 0 dB. 2. Draw high frequency
2. Draw high frequency asymptote at +90°
5 19 asymptote at +20 3. Connect with a
wo + dB/decade. straight line from

3. Connect lines at wg.

(Mirror image, around x-
axis, of Real Pole)

0.1 *Wo to 10‘0.)0

(Mirror image, around x-
axis, of Real Pole about 0°)

Underdamped Poles

(Complex conjugate
poles)

1

(wio)2 Y (w—o) 41

0<(¢<1

https://lpsa.swarthmore.edu/Bode/Bode All.html

1. Draw low frequency
asymptote at 0 dB.

2. Draw high frequency
asymptote at -40
dB/decade.

3. Connect lines at wy.

4. If (<0.5, then draw
peak at wq with

amplitude

IH(jw)l=-20-log1¢(20),
else don't draw peak

1. Draw low frequency
asymptote at 0°

2. Draw high frequency
asymptote at -180°

3. Connect with straight
line from

w = 0 to wo - 10¢
10¢

You can also look in a
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(it is very small).

textbook for examples

Underdamped Zeros

(Complex conjugate
Zeros)

1. Draw low frequency
asymptote at 0 dB.
2. Draw high frequency
asymptote at +40
dB/decade.
. Connect lines at wy,.

4. If ¢<0.5, then draw
peak at wq with

amplitude

w

IH(jwg)!=+20-l0g1(20),
else don't draw peak
(it is very small).

(Mirror image, around x-
axis, of Underdamped Pole)

1. Draw low frequency
asymptote at 0°

2. Draw high frequency
asymptote at +180°

3. Connect with straight
line from

w = 0 to wy - 10¢
10°¢

You can also look in a
textbook for examples.
(Mirror image, around x-
axis, of Underdamped
Pole)

For multiple order poles and zeros, simply multiply the slope of the magnitude plot
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BodePlotGui: A Tool for Generating
Asymptotic Bode Diagrams

i r i A i plots] [Making Plot] [Examples] [Drawing Tool]
BodePlotGui | |Rules Table| [ Printable

BodePlotGui is a graphical user interface written in the MATLAB® programming
language. It takes a transfer function and splits it into its constituent elements, then
draws the piecewise linear asymptotic approximation for each element. It is hoped that
the BodePlotGui program will be a versatile program for teaching and learning the
construction of Bode diagrams from piecewise linear approximations.

@ ¢ » ¢

o

Files for the program are found here.

Q@

Note: the MATLAB GUI doesn't display well on all devices (some elements of the
GUI may not show up). If you have this problem, simply run the MATLAB command
"guide" and open the fileBodePlotGui.fig. You can edit the size and layout of the GUI
for your machine. Save it, and then rerun the BodePlotGui.m file.

| have stopped working on BodePlotGui and have developed a similar tool in
JavaScript to make it more accessible (see the "Drawing Tool" tab, above). While
MATLAB is extremely powerful, it is also very expensive.

Use of program.

( A Simple Example. )

Consider the transfer function:

H(s) =1000 — = 10p —°
s+ 10 1

10

This function has three terms to be considered when constructing a Bode
diagram, a constant (100), a pole at w=10 rad/sec, and a zero at the origin. The
following MATLAB® commands begin execution of the GUI:

>>MySys=t£(1000*[1 O], [1 10]); %define Xfer fundtion
>>BodePlotGui (MySys) %$Invoke GUI

The GUI generates a window as shown below.

4] Asymptotic Bode PIOtter sy SNSEGIIN | A e

Help

Asvmptotic Bode Plot -+ 10
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Magnitude Plot Phase Plot
1{“] v TR R E A TRF v TR A P v LS v L sl B

135

pet?
ant

Magnitude - dB
8 &8 3 3
Fhase - degrees

(1] T stk : -457
-20 -90
-40 G R RLMNESEGE  uSsany @ e 135 G FREecE RURMTRGROST  RORERERG
10°" 10° 10’ 102 10° 10" 10° 10 102
Frequency - w, rad-sec”’ Frequency - w, rad-sec”’
Elements included in plot Elements excluded from plot Leg
Constant = 16+02 (40 dB) phi=0 - I - |

Real Pole at -10 e p—
Zero at origin

Select element to exclude from plot

Starting in the upper left and going counterclockwise, the windows show:

1. The magnitude plot, both the piecewise linear approximation for all three terms as well
as the asymptotic plot for the complete transfer function and the exact Bode diagram for
magnitude. Also shown is a zero reference line.

. The phase plot.

. Alist of the systems in the user workspace.

. Several checkboxes that let the user format the image. In particular there is a check-
box that determines whether or not to display the asymptotic plot for the complete
transfer function; sometimes it gets in the way of seeing the other plots, so you may
want to hide it.

5. The legend identifying individual terms on the plot.

6. A box that shows elements excluded from the plot. This box is empty in this display
because the diagram displays all three elements of the transfer function.

. A'Legend' box that shows elements displayed in the plot.

. Several check-boxes that allow the user to display how the plots are displayed

. Also in the upper left is a "Help" tab.

A WN

© 00 N

Also shown in the upper right hand corner is the transfer function, H(s).

Modifying what is displayed

The function displayed can be manipulated term by term to illustrate the effect of
each term. For example, the zero at the origin can be excluded simply by clicking on it

in the Inwer left hand hnx The finiire helow shnwe the rearilt
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TIV IU YT U UL LI U MU T I M T MU YYD YYD L 1 T

-
4| Asymptatic Bode Plotter

Real Pole at-10

Select element to include in plot
Select element to exclude from plot

Help
1000
. =
Asvmptotic Bode Plot s + 10
Magnitude Plot Phase Plot
80 i
0 a0
- 60 451
]
40
E 0
E: 20
-45
@
=
-20 -90
_41] MR L T L M L _135 il M T il L
107" 10° 10’ 10?2 10% 107 10" 10’ 10?
Frequency - w, rad-sec”’ Frequency - w, rad-sec”’
Elements included in plot Elements excluded from plot Leg
Constant = 1e+02 (40 dB) phi=0 .

Note that the zero at the origin is no longer included in the plot. Each term can be
likewise included or excluded by simply clicking on it.

The next plot shows the plot modified to have thicker lines, a grid, phase in radians
and with the asymptotic plot of the complete transfer function. In the previous graph,

the phase of the asymptotic plot obscured that of the real pole; this is an example when

it might be convenient not to show the asymptotic approximation.

-
“;' Asymptotic Bode Plotter

Help
1000
. His) = ——————-—-
Asymptotic Bode Plot s + 10
Magnitude Plot Phase Plot
1{“] T T T TTITT} T VT TTITT T VT TTHTT T LR L ARL ﬂ.?ﬁ L FIrTTeg L VrrTrmy T Vrrrimy
BOL
0 05}
: 60 0.25}
40
E 0
c 20¢
E Essssnnnnnnnnnnnnmn, -0.251 i
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= - w‘”‘l‘l‘rrl--
'2‘] llll’..... 0.5
40 rrea 075
10 10° 10’ 102 10* 107 10° 10’ 102
Frequency - w, rad-sec™’ Frequency - w, rad-sec”’
Elements included in plot Elements excluded from plot Leg
Constant = 18+02 (40 dB) phi=0 .

Real Pole at-10 ——

Select element to include in plot
Select element to exclude from plot

Underdamped terms

Underdamped poles (and zeros) present a difficulty because they cause a peak (dip)
in the magnitude plot. The program show this with a simple circle showing the peak
height. For example the transfer function

1
2

His) = —«—
=) s“+s5+100

yields the output shown below. The peak due to the underdamped pole is clearly

shown.
=1 =il  —
et D
Help
alt
. e S e
Asvmptotic Bode Plot a2 + = + 100
Magnitude Plot Phase Plot
R Sy S L S W —— 45 T
20
N 5 o 0 e
=] @O
=20 o 45}
14 [iF]
=40
= © g0
= -60 @
= -B0 E 135+t
= -100
O 180}
-120
107! 10% 10! 102 103 107! 10° 10! 102
Frequency - w, rad-sec”’ Frequency - w, rad-sec”’
Elements included in plot Elements excluded from plot Leg
Constant = 0.01 (-40 dB) phi=0 A
Complex Pole at wn=10, zeta=0.05 ——————
Select element to exclude from plot
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A more complicated example )
The example below is more complicated. It shows underdamped terms,
repeated poles, and a pole at the origin.
2 42+ 50 3*+ 35+ 50
H(s) =100 . = .
g +200s°+10000s s(z+100)
. J

4] Asymptotic Bode Pm

Help

IVIEYTTIUUE = UG

2824838288

Asymptotic Bode Plot

Magnitude Plot
140 T r
120

10°

Frequency - w, rad-sec’

Elements included in plot

Constant = 0.5 (-6 dB) phi=0

Pole at erigin

Real Pole at -1e+02, multi=2

Complex Zero at wn=7.1, zeta=0.071

Select element to exclude from plot

Elements excluded from plot

His)

Phase - degrees

225
180
135

45
0
-45

90|

-135
-180
-225

100 ==2 + 100 = + 5000

+ 10000 =
Phase Plot

-3 + 200 s-~2

4

=

[
-
5
-
X
H

L
“p

L
L
|
hd

LY

100 10?
Frequency - w, rad-sec”’
Leg
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Make your own Bode plot paper

%

The code for BodePaper.m is available at https://github.com/echeever/BodePlotGui

4 When making Bode plots one needs two pieces of semi-logarithmic paper, one for
the magnitude plot and one for the phase. The program described here, BodePaper.m,
can be used to make paper. Download it and save it so that MatLab can find it (from
the Matlab menu you can go to File— Set Path and include the directory where you
stored the BodePaper.m file.) . There is also a fine in the repository called
BodeMagPaper.m that creates only a magnitude plot.

.3 The syntax for calling is given by the function's help file.

e N
€> >> help BodePaper

BodePaper is Matlab code to generate graph paper [for Bode
two semilog graphs for making Bode plots. The top plot is
units on the vertical axis is set to dB. The bottom plot s
units on the phase plot can be radians or degrees, at the
user. The default is degrees.

The correct calling syntax is:
BodePaper (om_lo, om hi, dB lo, dB hi, ph lo, ph hi, UseRad
om lo the low end of the frequency scale. This can be
rad/sec or Hz. No units are displayed on |the graph
om hi the high end of the frequency scale.
dB lo the bottom end of the dB scale.
dB hi the top end of the dB scale.
ph_lo the bottom end of the phase scale.
ph_hi the top end of the phase scale.
UseRad an optional argument. If this argument is non-z
on the phase plot are radians. If this argument is
or set to zero, the units are degrees.

To make paper that goes from 0.1 Hz to 100 Hz, with the magnitude scale going
from -60 to 40 dB and the phase from -180 to 90 degrees, the function call would be

(>> BodePaper (0.1,100,-60,40,-180,90) )

and the paper looks like:

Bode Plot

R
1] IOSRRNA  A % 14
=20 P o

Wagnitude (dB)

Ar
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