
Lecture 3
ELE 301: Signals and Systems

Prof. Paul Cuff
Slides courtesy of John Pauly (Stanford)

Princeton University

Fall 2011-12

Cuff (Lecture 3) ELE 301: Signals and Systems Fall 2011-12 1 / 55

Time Domain Analysis of Continuous Time Systems

Today’s topics

Impulse response

Extended linearity

Response of a linear time-invariant (LTI) system

Convolution

Zero-input and zero-state responses of a system
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Impulse Response

The impulse response of a linear system hτ (t) is the output of the system
at time t to an impulse at time τ . This can be written as

hτ = H(δτ )

Care is required in interpreting this expression!

H
t0 0

0 t0τ

h(t,0)

h(t,τ)δ(t− τ)

δ(t)

t

t
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Note: Be aware of potential confusion here:

When you write
hτ (t) = H(δτ (t))

the variable t serves different roles on each side of the equation.

t on the left is a specific value for time, the time at which the output
is being sampled.

t on the right is varying over all real numbers, it is not the same t as
on the left.

The output at time specific time t on the left in general depends on
the input at all times t on the right (the entire input waveform).
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Assume the input impulse is at τ = 0,

h = h0 = H(δ0).

We want to know the impulse response at time t = 2. It doesn’t
make any sense to set t = 2, and write

h(2) = H(δ(2)) ⇐ No!

First, δ(2) is something like zero, so H(0) would be zero. Second, the
value of h(2) depends on the entire input waveform, not just the
value at t = 2.

H
δ(t)

t t0

0

02 2

h(2, 0)δ(2) h(t, 0)
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Time-invariance

If H is time invariant, delaying the input and output both by a time τ
should produce the same response

hτ (t) = h(t − τ).

In this case, we don’t need to worry about hτ because it is just h shifted in
time.

H
t0 0

0 t0τ

h(t)

h(t− τ)δ(t− τ)

δ(t)

t

t
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Linearity and Extended Linearity

Linearity: A system S is linear if it satisfies both

Homogeneity: If y = Sx , and a is a constant then

ay = S(ax).

Superposition: If y1 = Sx1 and y2 = Sx2, then

y1 + y2 = S(x1 + x2).

Combined Homogeneity and Superposition:
If y1 = Sx1 and y2 = Sx2, and a and b are constants,

ay1 + by2 = S(ax1 + bx2)
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Extended Linearity

Summation: If yn = Sxn for all n, an integer from (−∞ < n <∞),
and an are constants

∑

n

anyn = S

(∑

n

anxn

)

Summation and the system operator commute, and can be
interchanged.
Integration (Simple Example) : If y = Sx ,

∫ ∞

−∞
a(τ)y(t − τ) dτ = S

(∫ ∞

−∞
a(τ)x(t − τ)dτ

)

Integration and the system operator commute, and can be
interchanged.
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Output of an LTI System

We would like to determine an expression for the output y(t) of an linear
time invariant system, given an input x(t)

x y
H

We can write a signal x(t) as a sample of itself

x(t) =

∫ ∞

−∞
x(τ)δτ (t) dτ

This means that x(t) can be written as a weighted integral of δ functions.
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Applying the system H to the input x(t),

y(t) = H (x(t))

= H

(∫ ∞

−∞
x(τ)δτ (t)dτ

)

If the system obeys extended linearity we can interchange the order of the
system operator and the integration

y(t) =

∫ ∞

−∞
x(τ)H (δτ (t)) dτ.

The impulse response is

hτ (t) = H(δτ (t)).
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Substituting for the impulse response gives

y(t) =

∫ ∞

−∞
x(τ)hτ (t)dτ.

This is a superposition integral. The values of x(τ)h(t, τ)dτ are
superimposed (added up) for each input time τ .

If H is time invariant, this written more simply as

y(t) =

∫ ∞

−∞
x(τ)hτ (t)dτ.

This is in the form of a convolution integral, which will be the subject of
the next class.
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Graphically, this can be represented as:

t0 t

h(t)

0

t0 t0

δ(t)

t0 t0

t0 t0

x(t)

y(t)

(x(τ)dτ)δ(t− τ) (x(τ)dτ)h(t− τ)

δ(t− τ)

τ

τ

τ

τ

τ

x(t)

x(t) =
Z ∞

−∞
x(τ)δ(t− τ)dτ y(t) =

Z ∞

−∞
x(τ)h(t− τ)dτ

Input Output

h(t− τ)
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System Equation

The System Equation relates the outputs of a system to its inputs.

Example from last time: the system described by the block diagram

+
+

-

Z

a

x y

has a system equation
y ′ + ay = x .

In addition, the initial conditions must be given to uniquely specify a
solution.
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Solutions for the System Equation

Solving the system equation tells us the output for a given input.

The output consists of two components:

The zero-input response, which is what the system does with no input
at all. This is due to initial conditions, such as energy stored in
capacitors and inductors.

t
H

t0 0

y(t)x(t) = 0
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The zero-state response, which is the output of the system with all
initial conditions zero.

t
H

0 0

y(t)x(t)

t

If H is a linear system, its zero-input response is zero. Homogeneity
states if y = F (ax), then y = aF (x). If a = 0 then a zero input
requires a zero output.

t
H

0 0

x(t) = 0 y(t) = 0

t
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Example: Solve for the voltage across the capacitor y(t) for an arbitrary
input voltage x(t), given an initial value y(0) = Y0.

+−

R

C y(t)
+
−x(t)

i(t)
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From Kirchhoff’s voltage law

x(t) = Ri(t) + y(t)

Using i(t) = Cy ′(t)
RCy ′(t) + y(t) = x(t).

This is a first order LCCODE, which is linear with zero initial conditions.

First we solve for the homogeneous solution by setting the right side (the
input) to zero

RCy ′(t) + y(t) = 0.

The solution to this is
y(t) = Ae−t/RC

which can be verified by direct substitution.

Cuff (Lecture 3) ELE 301: Signals and Systems Fall 2011-12 17 / 55

To solve for the total response, we let the undetermined coefficient be a
function of time

y(t) = A(t)e−t/RC .

Substituting this into the differential equation

RC

[
A′(t)e−t/RC − 1

RC
A(t)e−t/RC

]
+ A(t)e−t/RC = x(t)

Simplifying

A′(t) = x(t)

[
1

RC
et/RC

]

which can be integrated from t = 0 to get

A(t) =

∫ t

0
x(τ)

[
1

RC
eτ/RC

]
dτ + A(0)
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Then

y(t) = A(t)e−t/RC

= e−t/RC
∫ t

0
x(τ)

[
1

RC
eτ/RC

]
dτ + A(0)e−t/RC

=

∫ t

0
x(τ)

[
1

RC
e−(t−τ)/RC

]
dτ + A(0)e−t/RC

At t = 0, y(0) = Y0, so this gives A(0) = Y0

y(t) =

∫ t

0
x(τ)

[
1

RC
e−(t−τ)/RC

]
dτ

︸ ︷︷ ︸
zero−state response

+ Y0e
−t/RC

︸ ︷︷ ︸
zero−input response

.
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RC Circuit example

The impulse response of the RC circuit example is

h(t) =
1

RC
e−t/RC

The response of this system to an input x(t) is then

y(t) =

∫ t

0
x(τ)hτ(t)dτ

=

∫ t

0
x(τ)

[
1

RC
e−(t−τ)/RC

]
dτ

which is the zero state solution we found earlier.
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Example:

High energy photon detectors can be modeled as having a simple
exponential decay impulse response.

Photon

Light

Scintillating
Crystal

cluding the PMT socket containing the dynode resistor chain

bias network, is 3 cm long, 3 cm wide, and 9.75 cm long.

III. METHODS—DETECTOR CHARACTERIZATION

A. Flood source histogram

A detector module was uniformly irradiated with a 68Ge

point source !2.6 "Ci#. The signals from the PS-PMT were

treated and digitized as described above in Sec. II D. The

lower energy threshold was set to approximately $100 keV
with the aid of the threshold on the constant fraction dis-

criminator and no upper energy threshold was applied.

B. Energy spectra

Boundaries were drawn on the 2D position map to define

a look-up table !LUT# which relates position in the 2D his-
togram to the appropriate element in the LSO array. The raw

list mode data were then resorted and a histogram of total

pulse amplitudes !sum of the four position outputs# gener-
ated for each crystal in the array. These energy spectra were

analyzed to determine the FWHM and the location of the

511 keV photopeak of each crystal. These two parameters

measure the energy resolution and light collection efficiency,

respectively.

C. Timing resolution

Two detectors were aligned facing each other, 15 cm

apart, and connected in coincidence. A 22Na point source

!8.8 "Ci# encapsulated in a 25.4 mm diameter, 3 mm thick

clear plastic disc with the activity in the central 1 mm was

placed in the center of the two detectors. For each detected

coincidence event, the sum of the four position signals for

each detector was sent to a constant fraction discriminator

which generated timing pulses. The lower energy threshold

on the CFD was set to approximately 100 keV. These two

timing pulses !one for each module# were in turn fed into a
calibrated time-to-amplitude converter !TAC# module. The
output from the TAC was then digitized to produce the tim-

ing spectrum.

D. Coincidence point spread function

Flood source histograms of both detectors were obtained

as described in Sec. III A from which the position LUTs

were defined. The detectors were then configured in coinci-

dence, 15 cm apart, and list-mode data was acquired by step-

ping a 1 mm diameter 22Na point source !same as used in
Sec. III C# between the detectors in 0.254 mm steps. The

point source was scanned across the fifth row of the detector.

For each opposing crystal pair, the counts were recorded as a

function of the point source position. A lower energy win-

dow of $100 keV was applied. The FWHM of the resulting

distribution for each crystal pair was determined to give the

intrinsic spatial resolution of the detectors.

E. Detector efficiency

A measure of the absolute detector efficiency was ob-

tained. A 18F point source with known activity !68 "Ci# was
placed 15 cm away from the face of the detector module. The

actual gamma-ray flux impinging on the detector face was

calculated from the solid angle subtended by the detector

module at the source. The constant fraction discriminator

was set to eliminate electronic noise ($100 keV# and the full
energy spectrum was obtained for each crystal over a fixed

time. A background measurement without the 18F point

source was also obtained to subtract the LSO background

from the measurement. A lower energy window of 350 keV

was applied to all of the crystals and the number of counts

falling under the photopeak was calculated. The number of

counts detected was then divided by the total number of

gamma rays impinging on the detector module to obtain the

detector efficiency.

IV. RESULTS—DETECTOR CHARACTERIZATION

A. Flood source histogram results

An image of the flood histogram from one detector mod-

ule is shown in Fig. 6. All 81 crystals from the 9!9 LSO
array are clearly visible. An average peak-to-valley ratio of

3.5 was obtained over the central row of nine crystals. Not

all crystals are uniformly spaced in the flood histogram after

applying Anger logic. This may be a result of the nonuni-

form tapering of the optical fiber taper, the nonuniform pack-

ing of the reflectance powder between the crystals, or most

likely, the nonuniform spacing of the anode plates in the

TABLE I. Summary results from the various lightguide configuration experi-

ments.

Coupler

Energy

resolution

!FWHN %#

Light

collection

efficiency !%#

Average

peak-to-

valley ratio

Number of

crystals clearly

resolved

Direct LSOa 13.0 100.0 10.0 9

Lightguidea 19.9 40.6 2.5 7

PCV lens 27.2 28.0 2.5 7

Fibera 35.0 12.6 6.0 6

Fiber taper 19.5 27.0 7.5 9

aEnergy resolution and light collection efficiency were measured with single

lightguide elements.

FIG. 5. A picture of the assembled detector module consisting of a 9!9
array of 3!3!20 mm3 LSO crystals coupled through a tapered optical fiber
bundle to a Hamamatsu R5900-C8 PS-PMT.

1540 Doshi et al.: LSO PET detector 1540

Medical Physics, Vol. 27, No. 7, July 2000

Crystal

Light Fibers

Photomultiplier

From: Doshi et al, Med Phys. 27(7), p1535 July 2000

These are used in Positiron Emmision Tomography (PET) systems.

Input is a sequence of impulses (photons).
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Output is superposition of impulse responses (light).

Input: Photons

t

Output: Light

t

t t

t t
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Summary

For an input x(t), the output of an linear system is given by the
superposition integral

y(t) =

∫ ∞

−∞
x(τ)hτ (t) dτ

If the system is also time invariant, the result is a convolution integral

y(t) =

∫ ∞

−∞
x(τ)h(t − τ) dτ

The response of an LTI system is completely characterized by its
impulse response h(t).
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Another expression for the superposition integral can be found by
substituting for τ = t − τ1. Then dτ = −dτ1 and τ1 = t − τ ,

y(t) =

∫ ∞

−∞
x(τ)h(t − τ)dτ

=

∫ −∞

∞
x(t − τ1)h(t − (t − τ1))d(−τ1)

=

∫ ∞

−∞
x(t − τ1)h(τ1)dτ1.

The block diagrams for a system using the impulse response:

y(t)x(t)
∗h(t)

y(t)x(t)
∗h(t)
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Superposition Integral for Causal Systems

For a causal system h(t) = 0 for t < 0, and

y(t) =

∫ ∞

−∞
x(τ)hτ (t) dτ.

Since hτ (t) = 0 for t < τ , we can replace the upper limit of the integral
by t

y(t) =

∫ t

−∞
x(τ)hτ(t) dτ.

Only past and present values of x(τ) contribute to y(t).
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LTI System Response to a Sinusoidal Input

A LTI system has a real impulse response h(t). A sinusoidal input

x(t) = A cos(2πf1t + θ)

produces an output

y(t) =

∫ ∞

−∞
h(τ) [A cos(2πf1(t − τ) + θ)] dτ.

Using the identity cos(a− b) = cos a cos b + sin a sin b,

y(t) = A cos(2πf1t + θ)

∫ ∞

−∞
h(τ) cos(2πf1τ)dτ

+A sin(2πf1t + θ)

∫ ∞

−∞
h(τ) sin(2πf1τ)dτ.
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Since h(t) is real,

y(t) = Hc(f1)A cos(2πf1t + θ) + Hs(f1)A sin(2πf1t + θ).

where

Hc(f1) =

∫ ∞

−∞
h(τ) cos(2πf1τ)dτ

Hs(f1) =

∫ ∞

−∞
h(τ) sin(2πf1τ)dτ

are real constants.
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We can then write the output as

y(t) = |H(f1)|A cos (2πf1t + θ + ∠H(f1))

(using the same trigonometric identity in reverse), where

|H(f )| =
√
H2
c (f1) + H2

s (f1)

∠H(f1) = tan−1(−Hs(f1)/Hc(f1))

Note that the response to a sinusoidal input is determined by a single
complex number H(f1), which determines the magnitude of the output,
and the phase shift.

A sinusoidal input is scaled and delayed by an LTI system, but is otherwise
unchanged.
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Summary

The response of an LTI system is completely characterized by its
impulse response h(t).
For an input x(t), the output of an linear system is given by the
superposition integral

y(t) =

∫ ∞

−∞
x(τ)hτ (t) dτ

If the system is also time invariant, the result is a convolution integral

y(t) =

∫ ∞

−∞
x(τ)h(t − τ) dτ
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For a sinusoidal input at frequency f ,the output is
I a sinusoid at the same frequency,
I scaled in amplitude, and
I phase shifted.

This can be represented by a single complex number H(f ).
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Convolution Evaluation and Properties

Review: response of an LTI system
Representation of convolution
Graphical interpretation
Examples
Properties of convolution

Cuff (Lecture 3) ELE 301: Signals and Systems Fall 2011-12 31 / 55

Convolution Integral

The convolution of an input signal x(t) with and impulse response h(t) is

y(t) =

∫ ∞

−∞
x(τ)h(t − τ) dτ

= (x ∗ h)(t)

or
y = x ∗ h.

This is also often written as

y(t) = x(t) ∗ h(t)

which is potentially confusing, since the t’s have different interpretations
on the left and right sides of the equation (your book does this).
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Convolution Integral for Causal Systems

For a causal system h(t) = 0 for t < 0, and

y(t) =

∫ ∞

−∞
x(τ)h(t − τ) dτ.

Since h(t − τ) = 0 for t < τ , the upper limit of the integral is t

y(t) =

∫ t

−∞
x(τ)h(t − τ)dτ.

Only past and present values of x(τ) contribute to y(t).
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t0 t0

y(t)

τ

x(t)

x(t) =
Z ∞

−∞
x(τ)δ(t− τ)dτ

τ > tτ < t

y(t) =

∫ t

−∞
x(τ)h(t − τ)dτ

Does not 
contribute to y(t)

If x(t) is also causal, x(t) = 0 for t < 0, and the integral further simplifies

y(t) =

∫ t

0
x(τ)h(t − τ) dτ.

t0 t0

y(t)

τ

x(t)
τ > tτ < t

Does not 
contribute to y(t)

Does not 
contribute to y(t)

x(t) =

∫ t

0

x(τ)δ(t − τ)dτ y(t) =

∫ t

0

x(τ)h(t − τ)dτ
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Graphical Interpretation

An increment in input x(τ)δτ (t)dτ produces an impulse response
x(τ)hτ (t)dτ . The output is the integral of all of these responses

y(t) =

∫ ∞

−∞
x(τ)hτ(t) dτ

Another perspective is just to look at the integral.

hτ (t) = h(t − τ) is the impulse response delayed to time τ

If we consider h(t − τ) to be a function of τ , then h(t − τ) is delayed
to time t, and reversed.

τ t

h(t − τ)

τt

h(t − τ)
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This is multiplied point by point with the input,

τt

h(t − τ)
x(τ)

τt

x(τ)h(t − τ)

Then integrate over τ to find y(t) for this t.

Graphically, to find y(t):

flip impulse response h(τ) backwards in time (yields h(−τ))

drag to the right over t (yields h(−(τ − t)))

multiply pointwise by x (yields x(τ)h(t − τ))

integrate over τ to get y(t) =

∫ ∞

−∞
x(τ)h(t − τ) dτ
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Simple Example

3-1 0 1 2

1

2

3-1 0 1 2

1

2
h(τ)

τ

h(t− τ)

h(−τ)

3-1 0 1 2

1

2 x(τ)

τ

3-1 0 1 2

1

2

τ

τ
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3-1 0 1 2

1

2 x(τ)

τ

h(t− τ) t < 0

3-1 0 1 2

1
x(τ)

τ

h(t− τ)
0< t < 1

3-1 0 1 2

1
x(τ)

h(t− τ) 1< t < 2

3-1 0 1 2

1

2 x(τ)

τ

h(t− τ) 2< t < 3

3-1 0 1 2

1

2 x(τ)

τ

h(t− τ) t > 3

3-1 0 1 2

1

2

τ

y(t) = (x∗h)(t)
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Communication channel, e.g., twisted pair cable

y(t)x(t)
∗h(t)

Impulse response:

0 2 4 6 8 100

0.5

1

1.5

t

h

h(t)

t

This is a delay ≈ 1, plus smoothing.
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Simple signaling at 0.5 bit/sec; Boolean signal 0, 1, 0, 1, 1, . . .

0 2 4 6 8 10

0

0.5

1

t

u

0 2 4 6 8 10

0

0.5

1

t

y

t

x(t)

y(t)

t

Output is delayed, smoothed version of input.

1’s & 0’s easily distinguished in y
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Simple signalling at 4 bit/sec; same Boolean signal

0 2 4 6 8 10

0

0.5

1

t

u

0 2 4 6 8 10

0

0.5

1

t

y

t

x(t)

y(t)
t

Smoothing makes 1’s & 0’s very hard to distinguish in y .
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Examples: Try these:

0 1 2 0 1 2 0 1 2

0 1 2 0 1 2 0 1 2

0 1 2 0 1 2 0 1 2

0 1 2 0 1 2 0 1 2

x(t) h(t) (x ∗ h)(t)

δ(t − 1)

1 1 1

1 1 1

1 1 1

1 1 1
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Properties of Convolution

For any two functions f and g the convolution is

(f ∗ g)(t) =

∫ ∞

−∞
f (τ)g(t − τ) dτ

If we make the substitution τ1 = t − τ , then τ = t − τ1, and dτ = −dτ1.

(f ∗ g)(t) =

∫ −∞

∞
f (t − τ1)g(τ1) (−dτ1)

=

∫ ∞

−∞
g(τ)f (t − τ1) dτ1

= (g ∗ f )(t)

This means that convolution is commutative.

Practically, If we have two signals to convolve, we can choose either to be
the signal we hold constant and the other to ”flip and drag.”
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Simple Example (x*h)

3-1 0 1 2

1

2 x(τ)

τ 3-1 0 1 2

1

2
h(τ)

τ

3-1 0 1 2

1

2 x(τ)

τ

h(t− τ)
x∗h

3-1 0 1 2

1

2

τ

x(t− τ)
h(τ)

h∗ x

3-1 0 1 2

1

2

τ

y(t) = (x∗h)(t)
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Convolution is associative

If we convolve three functions f , g , and h

(f ∗ (g ∗ h))(t) = ((f ∗ g) ∗ h)(t)

which means that convolution is associative.

Combining the commutative and associate properties,

f ∗ g ∗ h = f ∗ h ∗ g = · · · = h ∗ g ∗ f

We can perform the convolutions in any order.
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Linearity
Convolution is also distributive,

f ∗ (g + h) = f ∗ g + f ∗ h

which is easily shown by writing out the convolution integral,

(f ∗ (g + h))(t) =

∫ ∞

−∞
f (τ) [g(t − τ) + h(t − τ)] dτ

=

∫ ∞

−∞
f (τ)g(t − τ) dτ +

∫ ∞

−∞
f (τ)h(t − τ) dτ

= (f ∗ g)(t) + (f ∗ h)(t)

Together, the commutative, associative, and distributive properties mean
that there is an “algebra of signals” where

addition is like arithmetic or ordinary algebra, and
multiplication is replaced by convolution.

Cuff (Lecture 3) ELE 301: Signals and Systems Fall 2011-12 46 / 55



Time-invariant

Convolution with a delayed signal gives a delayed output.

(f ∗ gτ )(t) = (fτ ∗ g)(t) = (f ∗ g)(t − τ)
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Properties of Convolution Systems

The properties of the convolution integral have important consequences
for systems described by convolution:

Convolution systems are linear: for all signals x1, x2 and all α, β ∈ <,

h ∗ (αx1 + βx2) = α(h ∗ x1) + β(h ∗ x2)

Convolution systems are time-invariant: if we shift the input signal x
by T , i.e., apply the input

x1(t) = x(t − T )

to the system, the output is

y1(t) = y(t − T ).

In other words: convolution systems commute with delay.
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Composition of convolution systems corresponds to convolution of
impulse responses.
The cascade connection of two convolution systems y = (x ∗ f ) ∗ g

∗ f ∗gx yw

Composition

is the same as a single system with an impulse response h = f ∗ g

x y
∗( f ∗g)
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Since convolution is commutative, the convolution systems are also
commutative. These two cascade connections have the same response

∗ f ∗gx yw

∗ f∗gx yv

Many operations can be written as convolutions, and these all commute
(integration, differentiation, delay, ...)
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Example: Measuring the impulse response of an LTI system.

We would like to measure the impulse response of an LTI system,
described by the impulse response h(t)

t

δ(t)

t0 0

h(t)

∗h

This can be practically difficult because input amplitude is often limited. A
very short pulse then has very little energy.

A common alternative is to measure the step response s(t), the response
to a unit step input u(t)

t t0 0

s(t)
u(t)

∗h
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The impulse response is determined by differentiating the step response,

t0

u(t)

d
dt

∗h
t0

h(t)

t0

s(t)

To show this, commute the convolution system and the differentiator to
produce a system with the same overall impulse response

t0

u(t)

d
dt

t

δ(t)

0

∗h
t0

h(t)
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Convolution Systems with Complex Exponential Inputs

If we have a convolution system with an impulse response h(t), and
and input est where s = σ + jω

y(t) =

∫ ∞

−∞
h(τ)es(t−τ) dτ

= est
∫ ∞

−∞
h(τ)e−sτ dτ

We get the complex exponential back, with a complex constant
multiplier

H(s) =

∫ ∞

−∞
h(τ)e−sτ dτ

y(t) = estH(s)

provided the integral converges.
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H(s) is the transfer function of the system.

If the input is a complex sinusoid e jωt ,

H(jω) =

∫ ∞

−∞
h(τ)e−jωτ dτ

y(t) = e jωtH(jω)
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Summary

LTI systems can be represented as a the convolution of the input with
an impulse response.

Convolution has many useful properties (associative, commutative,
etc).

These carry over to LTI systems
I Composition of system blocks
I Order of system blocks

Useful both practically, and for understanding.

While convolution is conceptually simple, it can be practically difficult.
It can be tedious to convolve your way through a complex system.

There has to be a better way ...
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