
ECE 3640

Lecture 2 – Z Transforms

Objective: Z-transforms are to difference equations what Laplace transforms are
to differential equations. In this lecture we are introduced to Z-transforms, their
inverses, and their properties.

We will also solve difference equations using transform techniques.

Introduction to the Z-transform

As you recall, we talked first about differential equations, then difference equations.
The methods of solving difference equations was in very many respects parallel
to the methods used to solve differential equations. We then learned about the
Laplace transform, which is a useful tool for solving differential equations and for
doing system analysis on continuous-time systems. Our development now continues
to the Z-transform. This is a transform technique used for discrete time signals and
systems. As you might expect, many of the tools and techniques that we developed
using Laplace transforms will transfer over to the Z-transform techniques.

The Z-transform is simply a power series representation of a discrete-time se-
quence. For example, if we have the sequence x[0], x[1], x[2], x[3], the Z-transform
simply multiplies each coefficient in the sequence by a power of z corresponding to
its index. In this example

X(z) = x[0] + x[1]z−1 + x[2]z−2 + x[3]z−3.

Note that negative powers of z are used for positive time indexes. This is by
convention. (Comment.)

For a general causal sequence f [k], the Z-transform is written as

F [z] =

∞
∑

k=0

f [k]z−k.

For a general (not necessarily noncausal) sequence f [k],

F [z] =
∞
∑

k=−∞

f [k]z−k.

As for continuous time systems, we will be most interested in causal signals and
systems.

The inverse Z-transform has the rather strange and frightening form

f [k] =
1

2πj

∮

F [z]zk−1dz

where
∮

is the integral around a closed path in the complex plane, in the region of
integration. (Fortunately, this is rarely done by hand, but there is some very neat
theory associated with integrals around closed contours in the complex plane. If
you want the complete scoop on this, you should take complex analysis.)

Notationally we will write

F [z] = Z{f [k]} f [k] = Z−1{F [z]}

or
f [k] ↔ F [z]

ECE 3640: Lecture 2 – Z Transforms 2

Example 1 Find the Z-transform of f [k] = γku[k].

F [z] =

∞
∑

k=0

γkz−k =

∞
∑

k=0

(γ/z)k =
1

1 − γ/z

(Recall the formula for the sum of an infinite series. Remember it on your deathbed!)
When does this converge?

F [z] =
z

z − γ

The ROC is |z| > |γ|. (Compare with ROC for causal Laplace transform.) 2

Example 2 Find the following Z-transforms.

1. f [k] = δ[k]. F [z] = 1. ROC: all z.

2. f [k] = u[k]. F [z] = z
z−1 . ROC: |z| > 1.

3. f [k] = cos(βk).

F [z] =
1

2

[

z

z − ejβ
+

z

z − e−jβ

]

=
z(z − cosβ)

z2 − 2z cosβ + 1

2

Important and useful functions have naturally been transformed and put into tab-
ular form.

Inverse Z-transforms

Given the nature of the inverse Z-transform integral, we look for other ways of
computing the inverse. The approach is very similar to what we did for Laplace
transforms: We break the function down into pieces that we can recognize from the
table, then do table lookup. As for Laplace transforms, there will be a variety of
properties (delay, convolution, scaling, etc.) that will help us. The most important
tool, however, remains the Partial Fraction Expansion. However, we will find it
convenient to modify it slightly for our purposes here.

Example 3 Find the inverse Z-transform of F [z] = z
z−.2 .

Knowing what we know, it is straightforward to write

f [k] = (.2)ku[k]

2

Example 4 Find the inverse Z-transform of

F [z] =
8z − 19

(z − 2)(z − 3)

In order to do this, we need to expand using PFE into something like

F [z] =
k1z

z − 2
+

k2z

z − 3

because this is the form that we know about. But recall that the PFE we have come
to know and love always just has constants in the numerator. So we will create a
new function: Let

G[z] =
F [z]

z
=

8z − 19

z(z − 2)(z − 3)

ECE 3640: Lecture 2 – Z Transforms 3

Now do the PFE on G[z]:

F [z]

z
= G[z] =

k1

z
+

k2

z − 2
+

k3

z − 3

Using CUPI,

k1 =
−19

6
k2 =

3

2
k3 = 5/3

so we can write

G[z] =
F [z]

z
=

−(19/6)

z
+

(3/2)

z − 2
+

(5/3)

z − 3
.

Now we solve for F [z]:

F [z] = −19

6
+

(3/2)z

z − 2
+

(5/3)z

z − 3
.

Note that by our little trick we have put this into the form we need. Now we can
read off the inverse directly:

f [k] = −19

6
δ[k] + [

3

2
(2)k +

5

3
(3)k]u[k].

2

The point is: Computing inverse Z-transforms using PFE is exactly analogous
to computing inverse Laplace transforms, provided that you form F [z]/z first.

There is another method of obtaining inverse Z-transforms which is useful if you
only need a few terms. Recall that the Z-transform is simply a power series. All
you need to do is find the coefficients of the power series. One way to do this is by
long polynomial division. This gives you a numerical expression for as many terms
of f [k] as you choose to compute, not a closed-form mathematical expression.

Example 5 If F [z] = z/(z − .5), find f [k]. Work through the first few. 2

Properties of Z-transforms

In the descriptions of these properties, take

f [k] ↔ F [z].

Delay property This is very analogous to the differentiation property of Laplace
transforms, and will similarly allow us to solve differential equations.

f [k − 1]u[k − 1] ↔ z−1F [z]

So z−1 is the delay operator. (As s is the differentiation operator.) Also

f [k − 1]u[k] ↔ z−1F [z] + f [−1].

Note the difference between these two!

This property is used to introduce the initial conditions when we use trans-
forms to solve difference equations.

Proof For the more general case of shifting by m,

Z{f [k − m]u[k − m]} =

∞
∑

k=0

f [k − m]u[k − m]z−k =

∞
∑

k=m

f [k − m]z−k

ECE 3640: Lecture 2 – Z Transforms 4

Now make a a change of variable: let r = k − m, so that k = r + m.

Z{f [k − m]u[k − m]} =

∞
∑

r=0

f [r]z−(r+m) = z−mF [z].

For the other case,

Z{f [k − m]u[k} =

∞
∑

k=0

f [k − m]z−k =

∞
∑

r=−m

f [r]z−(r+m)

= z−m

[

−1
∑

r=−m

f [r]z−r +

∞
∑

r=0

f [k]z−r

]

= z−m
m

∑

k=1

f [−k]zk + z−mF [z]

So

f [k − 1] ↔ z−1F [z] + f [−1]

f [k − 2] ↔ z−2F [z] + z−1f [−1] + f [−2]

f [k − 3] ↔ z−3F [z] + z−2f [−1] + z−1f [−2] + f [−3]

2

Left Shift (Advance) Similar to the last property,

f [k + m]u[k] ↔ zmF [z]− zm
m−1
∑

k=0

f [k]z−k

Example 6 Find the Z-transform of the sequence

f [k] = k{u[k]− u[k − 6]}

(Plot this). Write this as

f [k] = ku[k]− ku[k − 6] = ku[k] − ((k − 6)u[k − 6] + 6u[k − 6])

Then
ku[k] ↔ z

(z − 1)2

and
u[k − 6] ↔ z−6 z

z − 1
so

(k − 6)u[k − 6] ↔ z−6 z

(z − 1)2

Combining,

F [z] =
z

(z − 1)2
+ z−6 z

(z − 1)2
+ 6z−6 z

z − 1
=

z6 − 6z + 5

z5(z − 1)2

2

ECE 3640: Lecture 2 – Z Transforms 5

Convolution Like the convolution property for Laplace transforms, the convo-
lution property for Z-transforms is very important for systems analysis and
design. In words: The transform of the convolution is the product of the
transforms. This holds for both Laplace and Z-transforms.

If f1[k] ↔ F1[z] and f2[k] ↔ F2[z] then

f1[k] ∗ f2[k] ↔ F1[z]F2[z]

where ∗ denotes convolution (in this case, discrete-time convolution).

Proof This is somewhat easier (and more general) to prove for noncausal
sequences.

Z [f1[k] ∗ f2[k]] = Z
[

∞
∑

m=−∞

f1[m]f2[k − m]

]

=

∞
∑

k=−∞

∞
∑

m=−∞

f1[m]f2[k − m]z−k

=

∞
∑

m=−∞

f1[m]

∞
∑

k=−∞

f2[k − m]z−k

=
∞
∑

m=−∞

f1[m]
∞
∑

r=−∞

f2[r]z
−(r+m)

=
∞
∑

m=−∞

f1[m]z−m
∞
∑

r=−∞

f2[r]z
−r = F1[z]F2[z].

2

Multiplication by γk

γkf [k]u[k] ↔ F [z/γ]

Multiplication by k

kf [k]u[k] ↔ −z
d

dz
F [z]

Initial Value theorem For a causal f [k],

f [0] = lim
z→∞

F [z]

Final Value theorem If F [z] has no poles outside the unit circle (i.e. it is stable),

lim
n→∞

f [n] = lim
z→1

(z − 1)F (z).

Solution of difference equations

Example 7 Solve

y[k + 2] − 5y[k + 1] + 6y[k] = 3f [k + 1] + 5f [k]

with y[−1] = 11
6 and y[−2] = 37

36 and input f [k] = 2−ku[k]. First, shift the equation
so that we can take advantage of the form of the initial conditions. We replace
k → k − 2 to obtain

y[k] − 5y[k − 1] + 6y[k − 2] = 3f [k − 1] + 5f [k − 2]

ECE 3640: Lecture 2 – Z Transforms 6

Now take the Z-transform of each part.

y[k] ⇔ Y [z]

We are interested in what happens from k = 0 and onward, so y[k − 1] is to be
interpreted as y[k − 1]u[k], and not y[k − 1]u[k − 1]. In this way we introduce the
initial condition information:

y[k − 1]u[k] ⇔ z−1Y [z] + y[−1] = z−1Y [z] +
11

6
.

y[k − 2]u[k] ⇔ z−2Y [z] + z−1y[−1] + y[−2] = z−2Y [z] + z−1 11

6
+

37

36
.

Also take the Z-transform of the input sequence:

f [k] ⇔ z

z − 0.5

For delayed versions of the input function

f [k − r] ⇔ z−r z

z − 0.5

since the function is causal.
Now combine all of the pieces into the difference equation:

Y [z]− 5[z−1Y [z] +
11

6
] + 6[z−1Y [z] + z−1 11

6
+

37

36
] =

3

z − .5
+

5

z(z − .5)

Combining terms
(

1 − 5

z
+

6

z2

)

Y [z]−
(

3 − 11

6

)

=
3

z − .5
+

5

z(z − .5)

Identify portions due to input and initial conditions.
(

1 − 5

z
+

6

z2

)

Y [z] =
3z2 − 9.5z + 10.5

z(z − .5)

Multiply by z2:

(z2 − 5z + 6)Y [z] =
z(3z2 − 9.5z + 10.5)

z − .5

Solve for Y [z]:

Y [z] =
z(3z2 − 9.5z + 10.5)

(z − .5)(z2 − 5z + 6)

At this point, finding the solution is done by PFE. Remember to divide by z:

Y [z]

z
=

(3z2 − 9.5z + 10.5)

(z − .5)(z2 − 5z + 6)
=

k1

z − .5
+

k2

z − 2
+

k3

z − 3

Using CUPI we find that

Y [z]

z
=

(26/15)

z − .5
− (7/3)

z − 2
+

(18/5)

z − 3
.

We can now solve for y[n]:

y[n] = [
26

15
(.5)k − 7

3
2k +

18

5
3k]u[k]

2

Note that by keeping the portions due to the initial conditions separate from
the portions due to the input we can find both the zero-state response and the
zero-input response by this method.

ECE 3640: Lecture 2 – Z Transforms 7

Transfer Functions

Under the assumption of zero initial conditions (the zero-state response) the general
LTI difference equation

Q[E]y[k] = P [e]f [k]

(En + an−1E
n−1 + · · · + a1E + a0)y[k] = (bnEn + bn−1E

n−1 + · · · + b1E + b0)f [k]

may be transformed to

(zn + an−1z
n−1 + · · · a1z + a0)Y [z] = (bnzn + bn−1z

n−1 + · · · b1z + b0)F [z]

Solving for the output,

Y [z] =

(

bnzn + bn−1z
n−1 + · · · b1z + b0

zn + an−1zn−1 + · · · a1z + a0

)

F [z]

We define

H [z] =
zn + bn−1z

n−1 + · · · b1z + b0

zn + an−1zn−1 + · · · a1z + a0
=

P [z]

Q[z]

as the transfer function. Note that

H [z] =
Y [z]

F [z]
=

Z [zero-state response]

Z [input]

and the output is obtained by

Y [z] = F [z]H [z].

The poles of the transfer function are the roots of the characteristic equation, and
we can determine the stability of the system by examination of the transfer function.

Example 8 Unit delay: y[k] = f [k − 1]u[k − 1]. Y [z] = 1
z F [z]. H [z] = z−1. (Re-

member this!) 2

Example 9 Find the transfer function for the system

y[k + 2] + y[k + 1] + .16y[k] = f [k + 1] + .32f [k]

In operator notation

(E2 + E + .16)y[k] = (E + .32)f [k]

H [z] =
z + .32

z2 + z + .16

Now, if f [k] = (−2)−ku[k] find the zero-state response (all initial conditions zero).

F [z] =
z

z + .5

Y [z] = F [z]H [z] =
z(z + .32)

(z2 + z + .16)(z + .5)

Don’t forget to pull over z before the PFE:

Y [z]

z
=

(z + .32)

(z2 + z + .16)(z + .5)
=

2/3

z + .2
− 8/3

z + .8
+

2

z + .5

y[k] = [
2

3
(−.2)k − 8

3
(−.8)k + 2(−.5)k]u[k]

ECE 3640: Lecture 2 – Z Transforms 8

2

If the input is f [k] = δ[k], then the output is

Y [z] = H [z]F [z] = H [z].

So
h[k] ⇔ H [z].

The transfer function is the Z-transform of the impulse response.
Nomenclature. A discrete-time filter which has only a numerator part (only zeros,
except for possible poles at the origin which correspond to delays) is said to be a
finite impulse response (FIR) filter.

Example 10 What is the impulse response of a filter with

H [z] = 1 + 2z−1 + 3z−3

Note that all FIR filters are stable. 2

A filter with poles is said to be an infinite impulse response (IIR) filter.

Example 11 What is the impulse response of a filter with

H [z] =
z

z − .5
.

2

Note that there is no practical way of making an FIR filter for continuous time
systems: this is available only for digital filters.

System Realization

All of the block diagram operations we talked about with respect to Laplace trans-
forms still apply. Series (cascade), parallel, and feedback configurations all have the
same block diagram simplifications.

The same techniques we used for “system realization” of Laplace transforms
still apply for Z-transforms. The only difference is to substitute z−1 for 1

s . Even
though the diagram ends up the same, there may be understanding to be gained
by working through the steps. As before, we will take an example of a third order
transfer function

H [z] =
b3z

3 + b2z
2 + b1z + b0

z3 + a2z2 + a1a + a0

Break this into two pieces: Let

X [z] =
1

z3 + a2z2 + a1a + a0
F [z]

and let
Y [z] = X [z](b3z

3 + b2z
2 + b1z + b0)

From X [z] we can write

z3X [z] + a2z
2X [z] + a1zX [z] + z0X [z] = F [z]

z3X [z] = −a2z
2X [z]− a1zX [z]− z0X [z] + F [z]

Draw a block diagram. Then we connect the rest of the pieces to get Y [z].

ECE 3640: Lecture 2 – Z Transforms 9

Example 12 Draw a system realization for

H [z] =
z + 2

z2 + 5z + 1

2

Note that in FIR filters the output depends only on the current and previous inputs.
In IIR filters, the output depends on these and also on prior outputs — there is
some kind of feedback. It is this feedback that gives them their infinite response.

This realization is useful in a sort of theoretical sense, and gives us a map of
what is going on. But, unlike for continuous-time systems, there is no practical way
of doing this using resistors, capacitors, and op-amps. What the diagram really
represents is a computer program. We will now talk about how this is done. We
will start first with an FIR filter. Consider the particular example of

H [z] = 2 + 3z−1 + 4z−2 + 5z−3

Then
Y [z] = H [z]F [z] = (2 + 3z−1 + 4z−2 + 5z−3)F [z].

Transforming back,

y[k] = 2f [k] + 3f [k − 1] + 4f [k − 2] + 5f [k − 3]

Draw the block diagram. The equation tells us how to program it. First, we need
some way of keeping track of the previous values. Let is keep these in an array
called fprevious, and set it up so that fprevious[0] is the current value of f ,
fprevious[1] is the last value of f , and so on. Furthermore, let is keep track of
the coefficients in an array called coefficient, set up as follows:

coefficient[0] = 2;

coefficient[1] = 3;

coefficient[2] = 4;

coefficient[3] = 5;

Now we will create a filtering routine, and pass the coefficients into it. Note:
this code is provided for demonstration purposes only. It may have minor
problems with it that the student is expected to be able to understand
and correct.

1 /* fir filter, version 1 */

2 double firfilt(double f, double *coefficient)

3 {

4 static double fprevious[4];

5 double sum;

6

7 fprevious[0] = f; /* assign the current input */

8

9 /* compute the filter output */

10 sum = fprevious[0]*coefficient[0] + fprevious[1]*coefficient[1] +

11 fprevious[2]*coefficient[2] + fprevious[3]*coefficient[3];

12

13 /* now shift everything down */

14 fprevious[3] = fprevious[2];

15 fprevious[2] = fprevious[1];

16 fprevious[1] = fprevious[0];

17

18 return sum;

19 }

ECE 3640: Lecture 2 – Z Transforms 10

This computes the output and shifts everything down. Note that we have to
save the previous values of the outputs so they can be used for the next call to the
filter. This has problems — suppose you have more than one filter — how do you
keep things from getting messed up. Perhaps a cleaner way to do this would be to
pass in the previous values to the filter. The cleanest way is probably to use C++
with a constructor that keeps a separate data set for each instantiation of the filter
class. I will leave these finessings to the diligent student.

To generalize our simple filter routine, let us allow different numbers of coeffi-
cients to be passed in. This means that we have to allocate sufficient space for the
previous values, and add everything up in a loop.

1 #include <stdlib.h> /* put this at the top so calloc is used right */

2

3 .

4 .

5 .

6

7 double firfilt(double f, double *coefficient,int numcoef) /* version2 */

8 {

9 static double *fprevious = NULL;

10 double sum;

11 int i;

12

13 if(fprevious == NULL) { /* first time in allocate enough space */

14 fprevious = (double *)calloc(numcoef,sizeof(double));

15 }

16

17 fprevious[0] = f; /* assign the current input */

18

19 sum = 0;

20 /* do the filter operations */

21 for(i = 0; i < numcoef; i++) {

22 sum += fprevious[i]*coefficient[i];

23 }

24

25 /* now shift everything down */

26 for(i = numcoef-1; i > 0; i--) {

27 fprevious[i] = fprevious[i-1];

28 }

29 return sum;

30 }

For the diligent students interested in speeding things up as much as possible, I
pose the following ideas:

1. Can the filter loop and the shift loop be combined, so that only one loop needs
to be execute to accomplish both functions?

2. The shifting operation is slow and unnecessary. How could you use a circular
queue to store the previous values so that the shifting operation is no longer
necessary?

Enough about FIR filters. Implementing IIR filters will also be addressed by
means of an example. We want to implement the filter represented by

H [z] =
6z2 + 2z + 3

z2 + 4z + 5

ECE 3640: Lecture 2 – Z Transforms 11

Y [z] = H [z]F [z]

(z2 + 4z + 5)Y [z] = (6z2 + 2z + 3)F [z]

In the time domain,

y[k + 2] + 4y[k + 1] + 5y[k] = 6f [k + 2] + 2f [k + 1] + 3f [k]

Shifting in time and solving for y[k],

y[k] = −4y[k − 1] − 5y[k − 2] + 6f [k] + 2f [k − 1] + 3f [k − 2]

Again, we have a formula for the filter output. Assume that the numerator coeffi-
cients are stored in an array numcoeff and the denominator coefficients are stored
in an array dencoeff:

numcoeff[0] = 6;

numcoeff[1] = 2; dencoeff[1] = -4;

numcoeff[2] = 3; dencoeff[2] = -5;

Caution: note that the denominator coefficients are the negative of the coefficients
in the original transfer function. We will keep the previous input values in an array
fprevious and keep previous output values in an array yprevious.

1 double iirfilt(double f, double *numcoeff, double *dencoeff) /* version 1*/

2 {

3 static double fprevious[3];

4 static double yprevious[3];

5 double y;

6

7 fprevious[0] = f; /* assign the current input */

8

9 /* compute the filter output */

10 y = fprevious[0]*numcoeff[0]; /* get it started */

11 y += fprevious[1]*numcoeff[1] + fprevious[2]*numcoeff[2] +

12 yprevious[1]*dencoeff[1] + yprevious[2]*dencoeff[2];

13

14 /* now shift everything down */

15 fprevious[2] = fprevious[1];

16 fprevious[1] = fprevious[0];

17

18 yprevious[2] = yprevious[1];

19 yprevious[1] = y; /* the output */

20

21 return y;

22 }

As before, we will generalize this to arbitrary transfer functions of denominator
degree degree:

1 /* version 2*/

2 double iirfilt(double f, double *numcoeff, double *dencoeff, int degree)

3 {

4 static double *fprevious = NULL;

5 static double *yprevious = NULL;

6 double y;

7 int i;

8

ECE 3640: Lecture 2 – Z Transforms 12

9 if(fprevious == NULL) { /* first time set up space */

10 fprevious = (double)calloc(degree+1,sizeof(double));

11 yprevious = (double)calloc(degree+1,sizeof(double));

12 }

13

14 fprevious[0] = f; /* assign the current input */

15

16 /* compute the filter output */

17 y = fprevious[0]*numcoeff[0]; /* get it started */

18 for(i = 1; i <= degree; i++) {

19 y += fprevious[i]*numcoeff[i];

20 }

21 yprevious[0] = y;

22

23 /* now shift everything down */

24 for(i = degree; i > 0; i--) {

25 fprevious[i] = fprevious[i-1];

26 yprevious[i] = yprevious[i-1];

27 }

28

29 return y;

30 }

Again, speedups are attainable: merge the shift loop into the filter loop, or get rid
of shifting entirely by using a circular queue.

Bilateral Z-transform

In the most general case, we have

F (z) =
∞
∑

k=−∞

f [k]z−k

Let us consider the z transform of f [k] = −γku[−(k + 1)] (draw the picture). We
find

F (z) =
z

z − γ
.

Compare with g[k] = γku[k]. What gives? Must specify region of convergence for
these.

Frequency response

Continuous time with transfer function H(s): ejωt → H(jω)ejωt. An analogous
result holds for discrete time systems.

Let the input to a discrete-time system be f [k] = zk (everlasting, so we don’t
have to worry about transients). Then

y[k] = h[k] ∗ zk = zk
∑

m

h[m]z−m = zkH [z].

More particularly, consider when z = e±jΩ. We find that

ejΩk → H(ejΩ)ejΩk

ECE 3640: Lecture 2 – Z Transforms 13

e−jΩk → H(e−jΩ)e−jΩk

Adding:
cosΩk → Re(H(ejΩ)ejΩk)

or, in polar form with H(ejΩ) = |H(ejΩ)|ej arg H(ejΩ) we find

cosΩk → |H(ejΩ)| cos(Ωk + arg H(ejΩk)).

That is, the cosine is modified in amplitude and phase by the transfer function.

Example 13 For the system y[k + 1]− 0.8y[k] = f [k + 1], determine the frequency
response. We have

H(z) =
z

z − 0.8
=

1

1 − 0.8z−1

H(ejΩ) =
1

1 − 0.8e−jΩ
=

1

(1 − 0.8 cosΩ) + j0.8 sinΩ

Then

|H(ejΩ)| =
1

√

(1 − 0.8 cosΩ)+(0.8 sinΩ)2

and

argH(ejΩ) = − tan−1 0.8 sinΩ

1 − 0.8 cosΩ
.

When the input is f [k] = 1, determine the output. What about when f [k] =
cos(π/6k − 0.2)? 2

Note that H(ejΩ) is periodic.

Frequency response from pole-zero plot: Rubber

sheet geometry

Let us write H(z) in terms of its poles and zeros:

H(z) = bn
(z − z1)(z − z2) · · · (z − zn)

(z − γ1)(z − γ2) · · · (z − γn)

Consider evaluating this at a point z = ejΩ, which is on the unit circle. We find

H(ejΩ)	=	bn
ejΩ − z1	· · ·	ejΩ − z1
ejΩ − γ1	· · ·	ejΩ − γ1

Let us write ejΩ − zi = rie
jφi (polar form for the line segment connecting them),

and ejΩ − zi = die
jθi (polar form). Then

|H(ejΩ)| = |bn|
r1r2 · · · rn

d1d2 · · · dn
= |bn|

product of distances from zeros to ejΩ

product of distances from poles to ejΩ

Similarly,

arg H(ejΩ) = (φ1+· · ·φn)−(θ1+· · ·+θn) = sum of zero angles to ejΩ−sum of pole angles to ejΩ.

Discuss filter design by pole placement, and the rubber sheet idea: poles increase
the gain, zeros decrease it. Notch filter. Overhead.

Example 14 Design using “trial and error” techniques a digital bandpass filter
which passes at ω = 250π rad/sec and has zero transmission at ω = 0 and ω =
1000π. The highest frequency in the system is f = 400 Hz.

ECE 3640: Lecture 2 – Z Transforms 14

To must sample at more than twice the highest frequency: fs > 2f = 800 Hz.
We will take fs = 1000 samples/second, so T = 1/fs = 1/1000. In order to get
zero transmission at the specified frequencies we must place zeros at ej0T = 1 and
ej1000πT = −1. (Draw the zeros.) To the the response to peak up at ω = 250π
we want to put a pole near it on the unit circle, ej250πT = ejπ/4, and also at the
conjugate location. Specifically, we will put the poles at

p1 = γejπ/4 p2 = γe−jπ/4.

where γ < 1 to ensure the poles are inside the unit circle. What is the effect of γ
on the response? The transfer function is

H(z) = K
(z − 1)(z + 1)

(z − γejπ/4)(z − γe−jπ/4)
= K

z2 − 1

z2 −
√

2γz + γ2
.

2

Example 15 We want to design a second-order notch filter to have zero trans-
mission at 250 Hz and a sharp recovery on each side of the notch. The highest
frequency in the system is f = 500 Hz. Take fs = 1000 Hz, to T = 1/1000. The
notch frequency is ωT = 2π(250)T = π/2. We need a zero there. To get the re-
covery gain, we need a pole nearby. Let up place the pole at ±ja with a < 1 for
stability. The transfer function is

H(z) = K
(z − j)(z + j)

(z − ja)(z + ja)
= K

z2 + 1

z2 + a2
.

ECE 3640: Lecture 2 – Z Transforms 15

Let us choose K to get unity DC gain:

H(1) = K
2

1 + a2

so
K = (1 + a2)/2.

2

Linear phase FIR filters

We have mentioned several times that FIR filters can have linear phase. Now we
will show why. Suppose that h[k] = h[n − k] (the coefficients are symmetric. In
particular, consider the example

h[k] = h[0]δ[k] + h[1]δ[k− 1] + h[2]δ[k− 2] + h[3]δ[k− 3] + h[4]δ[k− 4] + h[5]δ[k− 5]

then

H(ejΩ) = h[0] + h[1]e−jΩ + h[2]e−j2Ω + h[3]e−j3Ω + h[4]e−j4Ω + h[5]e−j5Ω

= e−j(5/2)Ω
(

h[0]ej(5/2)Ω + h[1]ej(3/2)Ω + h[2]ej(1/2)Ω + h[3]e−j(1/2)Ω + h[4]e−j(3/2)Ω + h[5]e−j(5/2)Ω
)

= e−j(5/2)Ω (2h[0] cos((5/2)Ω) + 2h[1] cos((3/2)Ω) + 2h[2] cos((1/2)Ω))

Then
argH(ejΩ) = −5/2Ω,

a linear function of phase.
We can pull a similar stunt with antisymmetry: h[k] = −h[n − k].

