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 <<   Stop   >> 

Bode plots are a very useful way to represent the gain and phase of a
system as a function of frequency.  This is referred to as the frequency
domain behavior of a system.  This web page attempts to demystify the
process. The various parts are more-or-less stand alone, so if you want to
skip one or more, that should not be a problem.  If you are only interested in
a quick lesson on how to make Bode diagrams go to "Making Plots " A
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a quick lesson on how to make Bode diagrams, go to Making Plots.   A
MATLAB program to make piecewise linear Bode plots is described in
BodePlotGui.

The documents are:
1. What is the frequency domain response?  In other words, "What does a

Bode Plot represent?" This includes an animation.
2. How are the piecewise linear asymptotic approximations derived?
3. Rules for making Bode plots.  This is a quick "How to" lesson for drawing

Bode plots.
4. Some examples (1, 2, 3, 4, 5, 6) - (combined into one file).
5. BodePlotGui:  A software tool for generating asymptotic Bode plots.
6. A MatLab program for making semi-logarithmic paper for drawing your own

Bode plots.
7. A table summarizing Bode rules
8 The MATLAB files discussed in these documents

What Bode Plots Represent: The
Frequency Domain
Overview  Freq Domain  Asymptotic plots  Making Plot  Examples  Drawing Tool
BodePlotGui  Rules Table  Printable

Contents
Why Sine Waves?
Determining system output given input and transfer function

Interactive Demo
Things to try

Key Concept: It is useful to study the response of a
system to sinusoidal inputs
Key Concept: The frequency response is shown
with two plots, one for magnitude and one for
phase.

An animation

Why Sine Waves?
One of the most commonly used test functions for a circuit or system is

the sine (or cosine) wave. This is not because sine waves are a particularly
common signal. They are in fact quite rare - the transmission of electricity (a
60 Hz sine wave in the U.S., 50 Hz in much of the rest of the world) is one
example. The reason sine waves are important is complex and involve a
branch of Mathematics called Fourier Theory. Briefly put: any signal going
into a circuit can be represented by a sum of sinusoidal waves of varying
frequency and amplitude (often an infinite sum).
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This is why sine waves are important. Not because they are common, but
because we can represent arbitrarily complex functions using only these very
simple function.

Determining system output given input and transfer
function

Given that sinusoidal waves are important, how can we analyze the
response of a circuit or system to sinusoidal inputs (after all transients have
died out - the so-called sinusoidal steady state)? There are many ways to do
this, depending on your mathematical sophistication. Let's use a fairly basic
explanation that uses phasors. If you are unfamiliar with phasors, a brief
introduction is here. A technique using Laplace Transforms is given here.

For a system of the type we are studying (linear constant coefficient) if the
input to a system is sinusoidal at a particular frequency, then the output of
the system is also a sinusoid at the same frequency, but typically with a
different amplitude or phase. Put another way, if the input to a system
(described by the transfer function H(s)) is A·cos(ω·t+φ) then the output is
M·A·cos(ω·t+φ+θ). This is likewise true for sine, since it simply a cosine with
φ=-π2 radians (or -90°). This is shown below.

 

In this diagram the magnitude of the sinusoid has changed by a factor of M
(which we will take to be a positive real number) and the phase has changed
by a factor of θ (a real number, not necessarily positive). It is our task to find
the value of M and θ for a particular system, H(s), at a particular frequency,
ω. We call M the magnitude of the system (or transfer function) at ω, and we
call θ the phase of the system at that frequency.

Using complex impedances it is possible to find the transfer function of a
circuit. For example, the circuit below is described by the transfer function,
H(s), where s= jω.

Circuit Transfer Function

   

Consider the case where R=2MΩ and C=1μF. In that case:

H(s) = =
Vout (s)

Vin (s)

1

1 + sRC

H (s) = H (jω) =
1

1 + 2s

1

1 + j2ω
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Choose a transfer function.

Set input parameters,
Vin(t)=A·cos(ω·t+φ).

Set ω:   1.000 ω
0

 3
Set A:   1 A

0.2
 2

Set φ:   0 φ
-180

 180

At ω =1, H(jω) = 1/(1.00
+ j2.00) = 0.45∠-63.4° =
M∠θ.
Since the input can be
represented as 1∠0°,
The output is
M·A∠(θ+φ) =
0.45∠-63.4°.

Magnitude Phase Time
Domain

H(jω) 0.45 -63.4° 0.45·cos(1·t
+ -63.4°)

Input 1 0° 1·cos(1·t +
0°)

Output 0.45 -63.4° 0.45·cos(1·t
+ -63.4°)

Directions for Use

Generally we know the input Vin and want to find the output Vout. We can do
this by simple multiplication

If we have a phasor representation for the input and the transfer function, the
multiplication is simple (multiply magnitudes and add phases). Finding the
output becomes easy. Try it out.

Interactive Demo

Vout (jω) = Vin (jω) ⋅ H(jω) = Vin (jω) ⋅
1

1 + j2ω

H (s) = H (jω) =1
1+2s

1
1+j2ω

H (s) = H (jω) =1.6
s2+0.5s+1.6

1.6
(1.6−ω2)+j(0.5⋅ω)
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Directions for Use

Use the radio buttons
to choose a transfer
function, and the sliders
to choose the frequency,
amplitude and phase of
the input (you can also
set frequency by clicking
and dragging in either of
the top two graphs.)

The paragraph below
the sliders goes through
the calculation of the
numerical value of the
transfer function at the
chosen frequency, and
gives H(jω) in terms of
magnitude and phase.
Note that these are also
shown on the top two
graphs by a dot. To find
the magnitude of the
output, simply multiply
the magnitude of the
input (A) by the
magnitude of the
transfer function (M).
The phase of the output
is sum of the input
phase (φ) and the
phase of the transfer
function (θ).

The bottom graph
shows input, Vin(t) in
black, and Vout(t) in
magenta. The period, T
(maroon), is shown from
one upward zero-
crossing of the input
function to the next
(shown by black dots).
The delay Td (green), is
shown from an upward
zero crossing of the

3/7/25, 8:16 AM lpsa.swarthmore.edu/Bode/BodeAll.html

https://lpsa.swarthmore.edu/Bode/BodeAll.html 6/96



input to the next upward
zero crossing of the
output (green dot). The
phase is negative (since
output lags input) and
equal to ‑Td/T·360°. So
if the delay was Td=T/4
(i.e., one quarter of a
period) the phase shift
would be -90°)

|H
(j
ω
)|

Magnitude of

0.40.40.4

0 1

0

1

ω
),

 °

Phase of H

-45

0

The Asymptotic Bode Diagram:
Derivation of Approximations
Overview  Freq Domain  Asymptotic plots  Making Plot  Examples  Drawing Tool
BodePlotGui  Rules Table  Printable

Skip ahead to interactive demos.

Contents
Introduction

A Magnitude Plot
A Phase Plot

A more generic derivation
Making a Bode Diagram

A Constant Term
Magnitude
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Magnitude
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Example: Bode Plot of Gain Term
Key Concept: Bode Plot of Gain Term

A Real Pole
Magnitude
Phase

Example: Real Pole
Example:  Repeated Real Pole
Key Concept: Bode Plot for Real Pole
Aside: a different formulation of the phase
approximation

A Real Zero
Magnitude
Phase

Example: Real Zero
Key Concept: Bode Plot of Real Zero:

A Pole at the Origin
Magnitude
Phase

Example: Pole at Origin
Key Concept: Bode Plot for Pole at Origin

A Zero at the Origin
Example: Zero at Origin
Key Concept: Bode Plot for Zero at Origin

A Complex Conjugate Pair of Poles
Magnitude
Phase

Key Concept: Bode Plot for Complex Conjugate
Poles

A Complex Conjugate Pair of Zeros
Example: Complex Conjugate Zero
Key Concept: Bode Plot of Complex Conjugate
Zeros

Non-Minimum Phase Systems
Interactive Demos:

Interactive Demo: Bode Plot of Constant Term
Interactive Demo: Bode Plot of a Real Pole
Interactive Demo: Bode Plot of a Real zero
Interactive Demo: Bode Plot of a Pair of Complex Conjugate
Poles
Interactive Demo: Bode Plot of a Pair of Complex Conjugate
Zeros
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Skip ahead to interactive demos.

Introduction
Given an arbitrary transfer function, such as

if you wanted to make a mode plot you could calculate the value of H(s)
over a range of frequencies (recall s=j·ω for a Bode plot), and plot them. 
This is what a computer would naturally do.  For example if you use
MATLAB® and enter the commands

>> mySys=tf(100*[1 1],[1 110 1000])
mySys =
     100 s + 100
  ------------------
  s^2 + 110 s + 1000
>> bode(mySys)

you get a plot like the one shown below.  The asymptotic solution is given
elsewhere.
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-90
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)

Bode Diagram

Frequency  (rad/s)

However, there are reasons to develop a method for sketching Bode
diagrams manually.  By drawing the plots by hand you develop an
understanding about how the locations of poles and zeros effect the shape of

H(s) =
100s + 100

s2 + 110s + 1000
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g p p
the plots.  With this knowledge you can predict how a system behaves in the
frequency domain by simply examining its transfer function.  On the other
hand, if you know the shape of transfer function that you want, you can use
your knowledge of Bode diagrams to generate the transfer function.

The first task when drawing a Bode diagram by hand is to rewrite the
transfer function so that all the poles and zeros are written in the form (1+s/
ω0).  The reasons for this will become apparent when deriving the rules for a
real pole.  A derivation will be done using the transfer function from above,
but it is also possible to do a more generic derivation.  Let's rewrite the
transfer function from above.

Now let's examine how we can easily draw the magnitude and phase of this
function when s=jω. 

First note that this expression is made up of four terms, a constant (0.1), a
zero (at s=-1), and two poles (at s=-10 and s=-100). We can rewrite the
function (with s=jω) as four individual phasors (i.e., magnitude and phase),
each phasor is within a set of square brackets to make them more easily
distinguished from each other..

We will show (below) that drawing the magnitude and phase of each
individual phasor is fairly straightforward.  The difficulty lies in trying to draw
the magnitude and phase of the more complicated function, H(jω).  To start,
we will write H(jω) as a single phasor:

H(s) = 100 = 100

= 0.1

s + 1

(s + 10)(s + 100)

1 + s/1

10 ⋅ (1 + s/10) ⋅ 100 ⋅ (1 + s/100)

1 + s/1

(1 + s/10)(1 + s/100)

H(jω) = 0.1

= [|0.1| ∠ (0.1)]

1 + jω/1

(1 + jω/10)(1 + jω/100)

[|1 + jω/1| ∠ (1 + jω/1)]

[|1 + jω/10| ∠ (1 + jω/10)] [|1 + jω/100| ∠ (1 + jω

H(jω) = (|0.1| ) (∠ (0.1) + ∠ (1 + jω/1) − ∠ (

= |H(jω)| ∠H(jω)

|H(jω)| = |0.1|

∠H(jω) = ∠ (0.1) + ∠ (1 + jω/1) − ∠ (1 + jω/10) − ∠ (1 + jω/100)

|1 + jω/1|

|1 + jω/10| |1 + jω/100|

|1 + jω/1|

|1 + jω/10| |1 + jω/100|
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Drawing the phase is fairly simple.  We can draw each phase term
separately, and then simply add (or subtract) them.  The magnitude term is
not so straightforward because the magnitude terms are multiplied, it would
be much easier if they were added - then we could draw each term on a
graph and just add them. We can accomplish this by usinga logarthmic scale
(so multiplication and division become addition and subtraction). Instead of a
simple logarithm, we will use a deciBel (or dB) scale.

A Magnitude Plot
One way to transform multiplication into addition is by using the logarithm. 

Instead of using a simple logarithm, we will use a deciBel (named for
Alexander Graham Bell). (Note: Why the deciBel)  The relationship between a
quantity, Q, and its deciBel representation, X, is given by:

So if Q=100 then X=40; Q=0.01 gives X=-40; X=3 gives Q=1.41; and so on.

If we represent the magnitude of H(s) in deciBels several things happen.

The advantages of using deciBels (and of writing poles and zeros in the form
(1+s/ω0)) are now revealed.  The fact that the deciBel is a logarithmic term
transforms the multiplications and divisions of the individual terms to
additions and subtsractions.  Another benefit is apparent in the last line that
reveals just two types of terms, a constant term and terms of the form
20·log10(|1+jω/ω0|).  Plotting the constant term is trivial, however the other
terms are not so straightforward.  These plots will be discussed below. 
However, once these plots are drawn for the individual terms, they can
simply be added together to get a plot for H(s).

A Phase Plot
If we look at the phase of the transfer function, we see much the same

thing: The phase plot is easy to draw if we take our lead from the magnitude
plot.  First note that the transfer function is made up of four terms.  If we want

X = 20 ⋅ log10 (Q)

|H(s)| = |0.1|

20 ⋅ log10 (|H(s)|) = 20 ⋅ log10 (|0.1| )

= 20 ⋅ log10 (|0.1|) + 20 ⋅ log10 (|1 + jω/1|) + 20 ⋅ log

= 20 ⋅ log10 (|0.1|) + 20 ⋅ log10 (|1 + jω/1|) − 20 ⋅ log

|1 + jω/1|

|1 + jω/10| |1 + jω/100|

|1 + jω/1|

|1 + jω/10| |1 + jω/100|
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Again there are just two types of terms, a constant term and terms of the
form (1+jω/ω 0).  Plotting the constant term is trivial;  the other terms are
discussed below.

A more generic derivation

The discussion above dealt with only a single transfer function.  Another
derivation that is more general, but a little more complicated mathematically
is here.

 

Making a Bode Diagram
Following the discussion above, the way to make a Bode Diagram is to

split the function up into its constituent parts, plot the magnitude and phase
of each part, and then add them up.  The following gives a derivation of the
plots for each type of constituent part.  Examples, including rules for making
the plots follow in the next document, which is more of a "How to" description
of Bode diagrams.

A Constant Term
Consider a constant term:

Magnitude

Clearly the magnitude is constant as ω varies. 

Phase

The phase is also constant.  If K is positive, the phase is 0° (or any even
multiple of 180°, i.e., ±360°).  If K is negative the phase is -180°, or any odd
multiple of 180°.  We will use -180° because that is what MATLAB® uses. 
Expressed in radians we can say that if K is positive the phase is 0 radians, if
K is negative the phase is -π radians.

Example: Bode Plot of Gain Term

The magnitude (in dB is calculated as

∠H(s) = ∠ (0.1) + ∠ (1 + jω/1) − ∠ (1 + jω/10) − ∠ (1 + jω/100)

H(s) = H(jω) = K

|H(jω)| = |K|

H(s) = H (jω) = 15

|H (jω)| = |15| = 15 = 23.5 dB

∠H (jω) = ∠15 = 0∘
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Key Concept: Bode Plot of Gain Term
For a constant term, the magnitude plot is a straight line.
The phase plot is also a straight line, either at 0° (for a positive
constant) or ±180° (for a negative constant).

Interactive Demo

A Real Pole

Consider a simple real pole : 

The frequency ω0 is called the break frequency, the corner frequency or the
3 dB frequency (more on this last name later). The analysis given below
assumes ω0 is positive. For negative ω0 here.

Magnitude

The magnitude is given by

20 ⋅ log10 (15) = 23.5

H (s) = , H (jω) =1
1+ s

ω0

1

1+j
ω
ω0

|H (jω)| =
∣
∣
∣

∣
∣
∣

=

⎛ ⎞

1

1 + j ω
ω0

1

√12 + ( )
2

ω
ω0
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Let's consider three cases for the value of the frequency, and determine the
magnitude in each case.:

Case 1) ω<<ω0.  This is the low frequency case with ω/ω0→0.  We can
write an approximation for the magnitude of the transfer function:

This low frequency approximation is shown in blue on the diagram below.

Case 2) ω>>ω0.  This is the high frequency case with ω/ω0→∞. We can
write an approximation for the magnitude of the transfer function:

, so

The high frequency approximation is at shown in green on the diagram
below.  It is a straight line with a slope of -20 dB/decade going through the
break frequency at 0 dB (if ω=ω0 the approximation simplifies to 0 dB;
ω=10·ω0 gives an approximate gain of 0.1, or -20 dB and so on). That is, the
approximation goes through 0 dB at ω=ω0, and for every factor of 10
increase in frequency, the magnitude drops by 20 dB..

Case 3) ω=ω0. At the break frequency

This point is shown as a red circle on the diagram.

To draw a piecewise linear approximation, use the low frequency
asymptote up to the break frequency, and the high frequency asymptote
thereafter.

|H (jω)|dB = 20 ⋅ log10

⎛⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎠

1

√1 + ( )
2

ω
ω0

√1 + ( )
2

≈ 1, and |H (jω)|dB ≈ 20 ⋅ log10 ( ) = 0
ω

ω0

1

1

√1 + ( )
2

≈ √( )
2

≈ω
ω0

ω
ω0

ω
ω0

|H (jω)|dB ≈ 20 ⋅ log10 ( )ω0

ω

|H (jω0)|dB = 20 ⋅ log10

⎛⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎠

= 20 ⋅ log10 ( ) ≈ −3 dB
1

√1 + ( )
2

ω0

ω0

1

√2
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The resulting asymptotic approximation is shown highlighted in transparent
magenta.  The maximum error between the asymptotic approximation and
the exact magnitude function occurs at the break frequency and is
approximately -3 dB.
 
Magnitude of a real pole: The piecewise linear asymptotic Bode plot for
magnitude is at 0 dB until the break frequency and then drops at 20 dB per
decade as frequency increases (i.e., the slope is -20 dB/decade).

Phase

The phase of a single real pole is given by is given by

Let us again consider three cases for the value of the frequency:

Case 1) ω<<ω0.  This is the low frequency case with ω/ω0→0.  At these
frequencies We can write an approximation for the phase of the transfer
function

The low frequency approximation is shown in blue on the diagram below.

Case 2) ω>>ω0.  This is the high frequency case with ω/ω0→∞.  We can
write an approximation for the phase of the transfer function

∠H (jω) = ∠ ( ) = −∠(1 + j ) = − arctan( )1

1 + j
ω
ω0

ω

ω0

ω

ω0

∠H (jω) ≈ − arctan(0) = 0∘ = 0 rad

∠H (jω) ≈ − arctan(∞) = −90∘ = − rad
π

2
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The high frequency approximation is at shown in green on the diagram
below.  It is a horizontal line at -90°. 

Case 3) ω=ω0.  The break frequency.  At this frequency

This point is shown as a red circle on the diagram.

A piecewise linear approximation is not as easy in this case because the
high and low frequency asymptotes don't intersect.  Instead we use a rule
that follows the exact function fairly closely, but is also somewhat arbitrary. 
Its main advantage is that it is easy to remember. 
 
Phase of a real pole: The piecewise linear asymptotic Bode plot for phase
follows the low frequency asymptote at 0° until one tenth the break frequency
(0.1·ω0) then decrease linearly to meet the high frequency asymptote at ten
times the break frequency (10·ω0). This line is shown above.  Note that there
is no error at the break frequency and about 5.7° of error at 0.1·ω0 and 10·ω0
the break frequency.

Example: Real Pole
The first example is a simple pole at 5 radians per second.  The asymptotic
approximation is magenta, the exact function is a dotted black line.

∠H (jω) = − arctan(1) = −45∘ = − rad
π

4

H(s) =
1

1 + s

5
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Example:  Repeated Real Pole

The second example shows a double pole at 30 radians per second. 
Note that the slope of the asymptote is -40 dB/decade and the phase
goes from 0 to -180°. The effect of repeating a pole is to double the slope
of the magnitude to -40 dB/decade and the slope of the phase to
-90°/decade.

H(s) =
1
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Key Concept: Bode Plot for Real Pole
For a simple real pole the piecewise linear asymptotic Bode plot for
magnitude is at 0 dB until the break frequency and then drops at 20

dB per decade (i.e., the slope is -20 dB/decade).   An nth order pole
has a slope of -20·n dB/decade.
The phase plot is at 0° until one tenth the break frequency and then

H(s)

(1 + )2
s

30
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p p q y

drops linearly to -90° at ten times the break frequency.  An nth order
pole drops to -90°·n.

The analysis given above assumes ω0 is positive. For negative ω0 here.

Interactive Demo

Aside: a different formulation of the phase approximation

There is another approximation for phase that is occasionally used.
The approximation is developed by matching the slope of the actual
phase term to that of the approximation at ω=ω0. Using math similar to
that given here (for the underdamped case) it can be shown that by
drawing a line starting at 0° at ω=ω0/eπ/2=ω0/4.81 (or ω0·e-π/2) to -90°
at ω=ω0·4.81 we get a line with the same slope as the actual function
at ω=ω0. The approximation described previously is much more
commonly used as is easier to remember as a line drawn from 0° at
ω0/5 to -90° at ω0·5, and easier to draw on semi-log paper. The latter is
shown on the diagram below.

Although this method is more accurate in the region around ω=ω0
there is a larger maximum error (more than 10°) near ω0/5 and ω0·5
when compared to the method described previously.

 

A Real Zero
The piecewise linear approximation for a zero is much like that for a pole
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The piecewise linear approximation for a zero is much like that for a pole 
Consider a simple zero: .

Magnitude

The development of the magnitude plot for a zero follows that for a pole. 
Refer to the previous section for details.  The magnitude of the zero is given
by

Again, as with the case of the real pole, there are three cases:

1. At  low frequencies, ω<<ω0, the gain is approximately 1 (or 0 dB).
2. At high frequencies, ω>>ω0, the gain increases at 20 dB/decade and goes

through the break frequency at 0 dB.
3. At the break frequency, ω=ω0, the gain is about 3 dB.

Magnitude of a Real Zero: For a simple real zero the piecewise linear
asymptotic Bode plot for magnitude is at 0 dB until the break frequency and
then increases at 20 dB per decade (i.e., the slope is +20 dB/decade).

Phase
The phase of a simple zero is given by:

The phase of a single real zero also has three cases (which can be derived
similarly to those for the real pole, given above):

1. At  low frequencies, ω<<ω0, the phase is approximately zero.
2. At high frequencies, ω>>ω0, the phase is +90°.
3. At the break frequency, ω=ω0, the phase is +45°.

Phase of a Real Zero: Follow the low frequency asymptote at 0° until one
tenth the break frequency (0.1 ω0) then increase linearly to meet the high
frequency asymptote at ten times the break frequency (10 ω0).

Example: Real Zero

This example shows a simple zero at 30 radians per second.  The
asymptotic approximation is magenta, the exact function is the dotted
black line.

H(s) = 1 + , H(jω) = 1 + j
s
ω0

ω
ω0

|H (jω)| =
∣
∣
∣
1 + j

∣
∣
∣

ω

ω0

∠H (jω) = ∠(1 + j ) = arctan( )ω

ω0

ω

ω0

H(s) = 1 +
s

30
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Key Concept: Bode Plot of Real Zero:
The plots for a real zero are like those for the real pole but mirrored
about 0dB or 0°.
For a simple real zero the piecewise linear asymptotic Bode plot for
magnitude is at 0 dB until the break frequency and then rises at +20

dB per decade (i.e., the slope is +20 dB/decade).   An n th order zero
has a slope of +20·n dB/decade.
The phase plot is at 0° until one tenth the break frequency and then

rises linearly to +90° at ten times the break frequency An nth order
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rises linearly to +90  at ten times the break frequency.  An n  order
zero rises to +90°·n.

The analysis given above assumes the ω0 is positive. For negative ω0 here.

Interactive Demo

A Pole at the Origin
A pole at the origin is easily drawn exactly.  Consider

Magnitude

The magnitude is given by

In this case there is no need for approximate functions and asymptotes, we
can plot the exact funtion. The function is represented by a straight line on a
Bode plot with a slope of -20 dB per decade and going through 0 dB at 1 rad/
sec.  It also goes through 20 dB at 0.1 rad/sec, -20 dB at 10 rad/sec... Since
there are no parameters (i.e., ω0) associated with this function, it is always
drawn in exactly the same manner.

Magnitude of Pole at the Origin: Draw a line with a slope of -20 dB/decade
that goes through 0 dB at 1 rad/sec.

Phase

The phase of a simple zero is given by (H(jω) is a negative imaginary
number for all values of ω so the phase is always -90°):

Phase of pole at the origin: The phase for a pole at the origin is -90°.

Example: Pole at Origin

This example shows a simple pole at the origin.  The exact (dotted

H (s) = , H (jω) = = −
1

s

1

jω

j

ω

|H (jω)| =
∣
∣
∣
−

∣
∣
∣

=

|H (jω)|dB = 20 ⋅ log10 ( ) = −20 ⋅ log10 (ω)

j

ω

1

ω

1

ω

∠H (jω) = ∠(− ) = −90∘j

ω
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black line) is the same as the approximation (magenta).

Key Concept: Bode Plot for Pole at Origin
No interactive demo is provided because the plots are always drawn in the same

way.
For a simple pole at the origin draw a straight line with a slope of -20
dB per decade and going through 0 dB at 1 rad/ sec. 
The phase plot is at -90°. 

The magnitude of an nth order pole has a slope of -20·n dB/decade
and a constant phase of -90°·n.
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A Zero at the Origin
A zero at the origin is just like a pole at the origin but the magnitude

increases with increasing ω, and the phase is +90° (i.e. simply mirror the
graphs for the pole around the origin around 0dB or 0°). 

Example: Zero at Origin

This example shows a simple zero at the origin.  The exact (dotted
black line) is the same as the approximation (magenta).
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Key Concept: Bode Plot for Zero at Origin
The plots for a zero at the origin are like those for the pole but
mirrored about 0dB or 0°.
For a simple zero at the origin draw a straight line with a slope of +20
dB per decade and going through 0 dB at 1 rad/ sec. 
The phase plot is at +90°. 

The magnitude of an nth order zero has a slope of +20·n dB/decade
and a constant phase of +90°·n.

A Complex Conjugate Pair of Poles
The magnitude and phase plots of a complex conjugate (underdamped)

pair of poles is more complicated than those for a simple pole.  Consider the
transfer function (with 0<ζ<1):

The analysis given below assumes the ζ is positive. For negative ζ see here.

Magnitude

The magnitude is given by

As before, let's consider three cases for the value of the frequency:

Case 1) ω<<ω0.  This is the low frequency case.  We can write an
approximation for the magnitude of the transfer function

H(s) = =
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s2 + 2ζω0s + ω2
0
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∣
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∣
∣
∣
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∣
∣
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The low frequency approximation is shown in red on the diagram below.

 

Case 2) ω>>ω0.  This is the high frequency case.  We can write an
approximation for the magnitude of the transfer function

The high frequency approximation is at shown in green on the diagram
below.  It is a straight line with a slope of -40 dB/decade going through the
break frequency at 0 dB.  That is, for every factor of 10 increase in frequency,
the magnitude drops by 40 dB.

 

Case 3) ω≈ω0.  It can be shown that a peak occurs in the magnitude plot
near the break frequency.  The derivation of the approximate amplitude and
location of the peak are given here.   We make the approximation that a peak
exists only when

0<ζ<0.5
and that the peak occurs at ω0 with height 1/(2·ζ).

To draw a piecewise linear approximation, use the low frequency
asymptote up to the break frequency, and the high frequency asymptote
thereafter.  If ζ<0.5, then draw a peak of amplitude 1/(2·ζ)  Draw a smooth
curve between the low and high frequency asymptote that goes through the
peak value.

As an example for the curve shown below ω0=10, ζ=0.1,

The peak will have an amplitude of 1/(2·ζ)=5.00 or 14 dB.

|H(jω)|dB = −20 ⋅ log10 (1) = 0

|H(jω)|dB = −20 ⋅ log10 (( )
2) = −40 ⋅ log10 ( )ω

ω0

ω

ω0

H(s) = = =
1

+ 0.02ζs + 1
s2

100

1

( )
2

+ 0.2( ) + 1s

10
s

10

1

( )
2

+ 2ζ ( ) +s
ω0

s
ω0

3/7/25, 8:16 AM lpsa.swarthmore.edu/Bode/BodeAll.html

https://lpsa.swarthmore.edu/Bode/BodeAll.html 26/96

https://lpsa.swarthmore.edu/Bode/underdamped/underdampedApprox.html#Simpler


The resulting asymptotic approximation is shown as a black dotted line, the
exact response is a black solid line. 

Magnitude of Underdamped (Complex) poles: Draw a 0 dB at low
frequencies until the break frequency, ω0, and then drops with a slope of -40
dB/decade. If ζ<0.5 we draw a peak of height at ω0, otherwise no peak is
drawn.

Note: The actual height of the peak and its frequency are both slightly less than the
approximations given above. An in depth discussion of the magnitude and phase
approximations (along with some alternate approximations) are given here.

Phase

The phase of a complex conjugate pole is given by is given by

Let us again consider three cases for the value of the frequency:

Case 1) ω<<ω0.  This is the low frequency case.  At these frequencies We
can write an approximation for the phase of the transfer function

|H(jω0)| ≈ , |H(jω0)|dB ≈ −20 ⋅ log10 (2ζ)
1

2ζ

∠H(jω) = ∠

⎛⎜⎜⎝
⎞⎟⎟⎠ = −∠ (( )

2

+ 2ζ( )+ 1)
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1
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2
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ω0

jω
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2ζ ω
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ω
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∠H (jω) ≈ − arctan( ) ≈ − arctan(0) = 0∘ = 0 rad
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ω
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The low frequency approximation is shown in red on the diagram below.

 

Case 2) ω>>ω0.  This is the high frequency case.  We can write an
approximation for the phase of the transfer function

Note: this result makes use of the fact that the arctan function returns a result in quadrant 2
since the imaginary part of H(j&omega;) is negative and the real part is positive.
The high frequency approximation is at shown in green on the diagram
below.  It is a straight line at -180°.

 

Case 3) ω=ω0.  The break frequency.  At this frequency

The asymptotic approximation is shown below for ω0=10, ζ=0.1, followed
by an explanation

( )
ω0

∠H (jω) ≈ −180∘ = −π rad
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A piecewise linear approximation is a bit more complicated in this case,
and there are no hard and fast rules for drawing it.  The most common way is
to look up a graph in a textbook with a chart that shows phase plots for many
values of ζ.  Three asymptotic approximations are given here.  We will use
the approximation that connects the the low frequency asymptote to the high
frequency asymptote starting at

and ending at

Since ζ=0.2 in this case this means that the phase starts at 0° and then
breaks downward at ω=ω0/10ζ=7.9 rad/sec. The phase reaches -180° at

ω=ω0·10ζ=12.6 rad/sec.

As a practical matter If ζ<0.02, the approximation can be simply a vertical
line at the break frequency. One advantage of this approximation is that it is
very easy to plot on semilog paper. Since the number 10·ω0 moves up by a

full decade from ω0, the number 10ζ·ω0 will be a fraction ζ of a decade above
ω0. For the example above the corner frequencies for ζ=0.1 fall near ω0 one
tenth of the way between ω0 and ω0/10 (at the lower break frequency) to one
tenth of the way between ω0 and ω0·10 (at the higher frequency).

Phase of Underdamped (Complex) Poles: Follow the low frequency
asymptote at 0° until

then decrease linearly to meet the high frequency asymptote at -180° at

Other magnitude and phase approximations (along with exact expressions) are given here.

Key Concept: Bode Plot for Complex Conjugate Poles
For the magnitude plot of complex conjugate poles draw a 0 dB at
low frequencies, go through a peak of height,

ω = = ω0 ⋅ 10−ζω0

10ζ

ω = ω0 ⋅ 10ζ

ω =
ω0

10ζ

ω = ω0 ⋅ 10ζ

|H(jω0)| ≈ , |H(jω0)|
dB

≈ −20 ⋅ log10 (2ζ)
1

2ζ
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at the break frequency and then drop at 40 dB per decade (i.e., the
slope is -40 dB/decade).  The high frequency asymptote goes
through the break frequency.  Note that in this approximation the
peak only exists for

0 < ζ < 0.5

To draw the phase plot simply follow low frequency asymptote at 0°
until

then decrease linearly to meet the high frequency asymptote at -180°
at

If ζ<0.02, the approximation can be simply a vertical line at the break
frequency.
Note that the shape of the graphs (magnitude peak height, steepness
of phase transition) are determined solely by ζ, and the frequency at
which the magnitude peak and phase transition occur are determined
solely by ω0.

Note: Other magnitude and phase approximations (along with exact expressions) are given
here.
The analysis given above assumes the ζ is positive. For negative ζ see here

Interactive Demo

A Complex Conjugate Pair of Zeros
Not surprisingly a complex pair of zeros yields results similar to that for a

complex pair of poles.  The magnitude and phase plots for the complex zero
are the mirror image (around 0dB for magnitude and around 0° for phase) of
those for the complex pole. Therefore, the magnitude has a dip instead of a
peak, the magnitude increases above the break frequency and the phase
increases rather than decreasing. The results will not be derived here, but
closely follow those for complex poles.

Note: The analysis given below assumes the ζ is positive. For negative ζ see here

Example: Complex Conjugate Zero

The graph below corresponds to a complex conjugate zero with ω0=3,
ζ=0.25

ω = = ω0 ⋅ 10−ζω0

10ζ

ω = ω0 ⋅ 10ζ

H (s) = ( )2

+ 2ζ( )+ 1
s

ω0

s

ω0
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The dip in the magnitude plot will have a magnitude of 0.5 or -6 dB.
The break frequencies for the phase are at ω=ω0/10ζ=1.7 rad/sec and

ω=ω0·10ζ=5.3 rad/sec.

Key Concept: Bode Plot of Complex Conjugate Zeros
The plots for a complex conjugate pair of zeros are very much like
those for the poles but mirrored about 0dB or 0°.
For the magnitude plot of complex conjugate zeros draw a 0 dB at
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For the magnitude plot of complex conjugate zeros draw a 0 dB at
low frequencies, go through a dip of magnitude:

at the break frequency and then rise at +40 dB per decade (i.e., the
slope is +40 dB/decade).  The high frequency asymptote goes
through the break frequency.  Note that the peak only exists for

0 < ζ < 0.5

To draw the phase plot simply follow low frequency asymptote at 0°
until

then increase linearly to meet the high frequency asymptote at 180°
at

Note that the shape of the graphs (magnitude peak height, steepness
of phase transition) are determined solely by ζ, and the frequency at
which the magnitude peak and phase transition occur are determined
solely by ω0.

Note: Other magnitude and phase approximations (along with exact expressions) are given
here.
The analysis given below assumes the ζ is positive. For negative ζ see here.

Interactive Demo

Non-Minimum Phase Systems
All of the examples above are for minimum phase systems. These

systems have poles and zeros that do not have positive real parts. For
example the term (s+2) is zero when s=-2, so it has a negative real root. First
order poles and zeros have negative real roots if ω0 is positive. Second order
poles and zeros have negative real roots if ζ is positive. The magnitude plots
for these systems remain unchanged, but the phase plots are inverted. See
here for discussion.

Interactive Demos:
Below you will find interactive demos that show how to draw the asymptotic
approximation for a constant, a first order pole and zero, and a second order
(underdamped) pole and zero. Note there is no demo for a pole or zero at the
origin because these are always drawn in exactly the same way; there are no
variable parameters (i.e., ω0 or ζ).

|H(jω0)| ≈ 2ζ, |H(jω0)|
dB

≈ 20 ⋅ log10 (2ζ)

ω = = ω0 ⋅ 10−ζω0

10ζ

ω = ω0 ⋅ 10ζ
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Interactive Demo: Bode Plot of Constant Term
This demonstration shows how the gain term

affects a Bode plot. To run the demonstration
either enter the value of K, or |K| expressed in dB,
in one of the text boxes below. If you enter |K| in
dB, then the sign of K is unchanged from its
current value. You can also set |K| and ∠K by
either clicking and dragging the horizontal lines
on the graphs themselve. The magnitude of K
must be between 0.01 and 100 (-40dB and
+40dB). The phase of K (∠K) can only be 0° (for a
positive value of K) or ±180° (for negative K).
Enter a value for gain, K: 1.00  ,

or enter |K| expressed in dB: 0.00  dB.

K = 1.00 so the value of
KdB = 20·log10(|K|) = 20·log10(|1.00|) = 0.00.
Or, given that KdB = 0.00, |K|

 = 10Kdb/20 = 100.00/20 = 1.
The sign of K depends on phase, in this case K is
positive.and phase = 0°.

Note that for the case of a constant term, the
approximate (magenta line) and exact (dotted
black line) representations of magnitude and
phase are equal.

Interactive Demo: Bode Plot of a Real Pole
This demonstration shows how a first order

pole expressed as:

is displayed on a Bode plot. To change the value
of ω0, you can either change the value in the text
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box, below, or drag the vertical line showing ω0
on the graphs to the right. The exact values of
magnitude and phase are shown as black dotted
lines and the asymptotic approximations are
shown with a thick magenta line. The value of ω0
is constrained such that 0.1≤ω0≤10 rad/second.

Enter a value for ωo: 1.000

Asymptotic Magnitude:  The asymptotic
magnitude plot starts (at low frequencies) at 0 dB
and stays at that level until it gets to ω0. At that
point the gain starts dropping with a slope of
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Rules for Constructing Bode Diagrams
Overview  Freq Domain  Asymptotic plots  Making Plot  Examples  Drawing Tool
BodePlotGui  Rules Table  Printable

This document will discuss how to actually draw Bode diagrams.  It
consists mostly of examples.

Key Concept -
To draw Bode diagram there are four steps:

1. Rewrite the transfer function in proper form.
2. Separate the transfer function into its constituent parts.
3. Draw the Bode diagram for each part.
4. Draw the overall Bode diagram by adding up the results from part 3.

1. Rewrite the transfer function in proper form.
A transfer function is normally of the form:

As discussed in the previous document, we would like to rewrite this so
the lowest order term in the numerator and denominator are both unity.

Some examples will clarify:

Example 1
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Note that the final result has the lowest (zero) order power of
numerator and denominator polynomial equal to unity.

Example 2

Note that in this example, the lowest power in the numerator was 1.

Example 3

In this example the denominator was already factored.  In cases like
this, each factored term needs to have unity as the lowest order power of
s (zero in this case).

2.  Separate the transfer function into its constituent
parts.

The next step is to split up the function into its constituent parts.  There
are seven types of parts:

1. A constant
2. Poles at the origin
3. Zeros at the origin
4. Real Poles
5. Real Zeros
6. Complex conjugate poles
7. Complex conjugate zeros

We can use the examples above to demonstrate again.

Example 1
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This function has 
a constant of 6, 
a zero at s=-10, 
and complex conjugate poles at the roots of s2+3s+50.  

The complex conjugate poles are at s=-1.5 ± j6.9 (where j=sqrt(-1)).  A
more common (and useful for our purposes) way to express this is to use
the standard notation for a second order polynomial

In this case

Example 2

This function has 
a constant of 3, 
a zero at the origin, 

and complex conjugate poles at the roots of s2+3s+50, in other
words

  

Example 3

This function has 
a constant of 2, 
a zero at s=-10, and 
poles at s=-3 and s=-50.
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3. Draw the Bode diagram for each part.
The rules for drawing the Bode diagram for each part are summarized on

a separate page.  Examples of each are given later.

4. Draw the overall Bode diagram by adding up the
results from step 3.

After the individual terms are drawn, it is a simple matter to add them
together.  See examples, below.

Examples: Draw Bode Diagrams for the following transfer
functions

These examples are compiled on the next page.

Example 1
A simple pole

 

Full Solution

Example 2
Multiple poles and zeros

Full Solution

Example 3
A pole at the origin and poles and zeros

Full Solution

Example 4
Repeated poles, a zero at the origin, and a negative constant
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Full Solution

Example 5
Complex conjugate poles

Full Solution

Bode Plot Examples
Overview  Freq Domain  Asymptotic plots  Making Plot  Examples  Drawing Tool
BodePlotGui  Rules Table  Printable

 
Several examples of the construction of Bode plots are included here;

click on the transfer function in the table below to jump to that example.
Examples  (Click on Transfer Function)

1

(a real
pole)

2

(real poles and
zeros)

3

(pole at
origin)

4

(repeated real poles,
negative constant)

5

(complex conj.
poles)

(
p

c
co

 

References

Rules for Drawing Bode Diagrams
Overview  Freq Domain  Asymptotic plots  Making Plot  Examples  Drawing Tool
BodePlotGui  Summary  Printable

The table below summarizes what to do for each type of term in a Bode
Plot.  This is also available as a Word Document or PDF.

The table assumes ω0>0. If ω0<0, magnitude is unchanged, but phase is
reversed.

 
Term Magnitude Phase
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Constant: K 20log10(|K|) K>0:  0°     
K<0:   ±180

Pole at Origin

(Integrator) 
-20 dB/decade passing

through 0 dB at ω=1 -90°

Zero at Origin

(Differentiator) 

+20 dB/decade passing
through 0 dB at ω=1

(Mirror image, around x
axis,of Integrator)

+90°
(Mirror image, ar

axis, of Integrator 

Real Pole 1. Draw low frequency
asymptote at 0 dB.

2. Draw high frequency
asymptote at -20
dB/decade.

3. Connect lines at ω0.

1. Draw low freq
asymptote at 

2. Draw high fre
asymptote at 

3. Connect with 
straight line fr
0.1·ω0 to 10·ω

Real Zero

1. Draw low frequency
asymptote at 0 dB.

2. Draw high frequency
asymptote at +20
dB/decade.

3. Connect lines at ω0.

(Mirror image, around x-
axis, of Real Pole)

1. Draw low freq
asymptote at 

2. Draw high fre
asymptote at 

3. Connect with 
straight line fr
0.1·ω0 to 10·ω

(Mirror image, aro
axis, of Real Pole a

Underdamped Poles

(Complex conjugate
poles)

1. Draw low frequency
asymptote at 0 dB.

2. Draw high frequency
asymptote at -40
dB/decade.

3. Connect lines at ω0.
4. If ζ<0.5, then draw

peak at ω0 with
amplitude
   
|H(jω0)|=-20·log10(2ζ),
else don't draw peak
(it is very small).

1. Draw low freq
asymptote at 

2. Draw high fre
asymptote at 

3. Connect with 
line from

You can also look 
textbook for examp

Underdamped Zeros

(Complex conjugate
zeros)

1. Draw low frequency
asymptote at 0 dB.

2. Draw high frequency
asymptote at +40
dB/decade.

3. Connect lines at ω0.
4. If ζ<0.5, then draw

peak at ω0 with
amplitude
    
|H(jω0)|=+20·log10(2ζ),

1. Draw low freq
asymptote at 

2. Draw high fre
asymptote at 

3. Connect with 
line from

Yo can also look

1
s
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1

+ 1s
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0 < ζ < 1
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|H(jω0)| +20 log10(2ζ),
else don't draw peak
(it is very small).

(Mirror image, around x-
axis, of Underdamped Pole)

You can also look 
textbook for examp

(Mirror image, aro
axis, of Underda

Pole)

For multiple order poles and zeros, simply multiply the slope of the

0 < ζ < 1

BodePlotGui: A Tool for Generating
Asymptotic Bode Diagrams
Overview  Freq Domain  Asymptotic plots  Making Plot  Examples  Drawing Tool
BodePlotGui  Rules Table  Printable

BodePlotGui is a graphical user interface written in the MATLAB®
programming language.  It takes a transfer function and splits it into its
constituent elements, then draws the piecewise linear asymptotic
approximation for each element.  It is hoped that the BodePlotGui program
will be a versatile program for teaching and learning the construction of Bode
diagrams from piecewise linear approximations. 

Files for the program are found here.

Note: the MATLAB GUI doesn't display well on all devices (some
elements of the GUI may not show up). If you have this problem, simply run
the MATLAB command "guide" and open the fileBodePlotGui.fig. You can
edit the size and layout of the GUI for your machine. Save it, and then rerun
the BodePlotGui.m file.

I have stopped working on BodePlotGui and have developed a similar tool
in JavaScript to make it more accessible (see the "Drawing Tool" tab, above).
While MATLAB is extremely powerful, it is also very expensive.

Use of program.

A Simple Example.

Consider the transfer function:

This function has three terms to be considered when constructing a
Bode diagram, a constant (100), a pole at ω=10 rad/sec, and a zero at
the origin. The following MATLAB® commands begin execution of the
GUI:

>>MySys=tf(1000*[1 0],[1 10]);   %define Xfer function
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y y ( [ ],[ ])
>>BodePlotGui(MySys)        %Invoke GUI

The GUI generates a window as shown below.

 

 Starting in the upper left and going counterclockwise, the windows show:

1. The magnitude plot, both the piecewise linear approximation for all three
terms as well as the asymptotic plot for the complete transfer function and the
exact Bode diagram for magnitude. Also shown is a zero reference line.

2. The phase plot.
3. A list of the systems in the user workspace.
4. Several checkboxes that let the user format the image.  In particular there is a

check-box that determines whether or not to display the asymptotic plot for the
complete transfer function; sometimes it gets in the way of seeing the other
plots, so you may want to hide it.

5. The legend identifying individual terms on the plot.
6. A box that shows elements excluded from the plot. This box is empty in this

display because the diagram displays all three elements of the transfer
function.

7 A 'Legend' box that shows elements displayed in the plot
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7. A 'Legend' box that shows elements displayed in the plot.
8. Several check-boxes that allow the user to display how the plots are displayed
9. Also in the upper left is a "Help" tab.

Also shown in the upper right hand corner is the transfer function, H(s).

Modifying what is displayed
The function displayed can be manipulated term by term to illustrate the

effect of each term. For example, the zero at the origin can be excluded
simply by clicking on it in the lower left hand box. The figure below shows the
result.

Note that the zero at the origin is no longer included in the plot.  Each term
can be likewise included or excluded by simply clicking on it.

The next plot shows the plot modified to have thicker lines, a grid, phase
in radians and with the asymptotic plot of the complete transfer function.  In
the previous graph, the phase of the asymptotic plot obscured that of the real
pole; this is an example when it might be convenient not to show the
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asymptotic approximation.

Underdamped terms

Underdamped poles (and zeros) present a difficulty because they cause a
peak (dip) in the magnitude plot.  The program show this with a simple circle
showing the peak height.  For example the transfer function

yields the output shown below.  The peak due to the underdamped pole is
clearly shown.
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A more complicated example

The example below is more complicated.  It shows underdamped
terms, repeated poles, and a pole at the origin.
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Make your own Bode plot paper
The code for BodePaper.m is available at

https://github.com/echeever/BodePlotGui

When making Bode plots one needs two pieces of semi-logarithmic paper,
one for the magnitude plot and one for the phase.  The program described
here, BodePaper.m, can be used to make paper.   Download it and save it so
that MatLab can find it (from the Matlab menu you can go to File→Set Path
and include the directory where you stored the BodePaper.m file.) . There is
also a fine in the repository called BodeMagPaper.m that creates only a
magnitude plot.

The syntax for calling is given by the function's help file.

>> help BodePaper

BodePaper is Matlab code to generate graph paper fo
two semilog graphs for making Bode plots. The top p
units on the vertical axis is set to dB. The bottom 
units on the phase plot can be radians or degrees, a
user. The default is degrees.

The correct calling syntax is:
BodePaper(om_lo, om_hi, dB_lo, dB_hi, ph_lo, ph_hi, 
    om_lo the low end of the frequency scale. This 
        rad/sec or Hz. No units are displayed on the
    om_hi the high end of the frequency scale.
    dB_lo the bottom end of the dB scale.
    dB_hi the top end of the dB scale.
    ph_lo the bottom end of the phase scale.
    ph_hi the top end of the phase scale.
    UseRad an optional argument. If this argument i
        on the phase plot are radians. If this argum
        or set to zero, the units are degrees.

To make paper that goes from 0.1 Hz to 100 Hz, with the magnitude scale
going from -60 to 40 dB and the phase from -180 to 90 degrees, the function
call would be

>> BodePaper(0.1,100,-60,40,-180,90)

and the paper looks like:
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To change the units on phase the function call would be:

 BodePaper(0.1,100,-60,40,-pi,pi/2,1)

and the paper now looks like this:

Referen

© Copyright 2005-2013 Erik Cheever    This page may be freely used for educational purposes.
Erik Cheever Department of Engineering Swarthmore College
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What Bode Plots Represent: The Frequency
Domain
Overview  Freq Domain  Asymptotic plots  Making Plot  Examples  Drawing Tool
BodePlotGui  Rules Table  Printable

Contents
Why Sine Waves?
Determining system output given input and transfer function

Interactive Demo
Things to try

Key Concept: It is useful to study the response of a system
to sinusoidal inputs
Key Concept: The frequency response is shown with two
plots, one for magnitude and one for phase.

An animation

Why Sine Waves?
One of the most commonly used test functions for a circuit or system is the sine (or

cosine) wave. This is not because sine waves are a particularly common signal. They
are in fact quite rare - the transmission of electricity (a 60 Hz sine wave in the U.S., 50
Hz in much of the rest of the world) is one example. The reason sine waves are
important is complex and involve a branch of Mathematics called Fourier Theory.
Briefly put: any signal going into a circuit can be represented by a sum of sinusoidal
waves of varying frequency and amplitude (often an infinite sum).

This is why sine waves are important. Not because they are common, but because
we can represent arbitrarily complex functions using only these very simple function.

Determining system output given input and transfer function
Given that sinusoidal waves are important, how can we analyze the response of a

circuit or system to sinusoidal inputs (after all transients have died out - the so-called
sinusoidal steady state)? There are many ways to do this, depending on your
mathematical sophistication. Let's use a fairly basic explanation that uses phasors. If
you are unfamiliar with phasors, a brief introduction is here. A technique using Laplace
Transforms is given here.

For a system of the type we are studying (linear constant coefficient) if the input to a
system is sinusoidal at a particular frequency, then the output of the system is also a
sinusoid at the same frequency, but typically with a different amplitude or phase. Put
another way, if the input to a system (described by the transfer function H(s)) is
A·cos(ω·t+φ) then the output is M·A·cos(ω·t+φ+θ). This is likewise true for sine, since it
simply a cosine with φ= π2 radians (or 90°) This is shown below
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Choose a transfer function.

Set input parameters,
Vin(t)=A·cos(ω·t+φ).

Set ω:   1.000 ω
0  3

Set A: 1 A

simply a cosine with φ=-π2 radians (or -90 ). This is shown below.

 

In this diagram the magnitude of the sinusoid has changed by a factor of M (which we
will take to be a positive real number) and the phase has changed by a factor of θ (a
real number, not necessarily positive). It is our task to find the value of M and θ for a
particular system, H(s), at a particular frequency, ω. We call M the magnitude of the
system (or transfer function) at ω, and we call θ the phase of the system at that
frequency.

Using complex impedances it is possible to find the transfer function of a circuit. For
example, the circuit below is described by the transfer function, H(s), where s= jω.

Circuit Transfer Function

   

Consider the case where R=2MΩ and C=1μF. In that case:

Generally we know the input Vin and want to find the output Vout. We can do this by
simple multiplication

If we have a phasor representation for the input and the transfer function, the
multiplication is simple (multiply magnitudes and add phases). Finding the output
becomes easy. Try it out.

Interactive Demo

H(s) = =
Vout (s)

Vin (s)

1

1 + sRC

H (s) = H (jω) =
1

1 + 2s

1

1 + j2ω

Vout (jω) = Vin (jω) ⋅ H(jω) = Vin (jω) ⋅
1

1 + j2ω

H (s) = H (jω) =1
1+2s

1
1+j2ω

H (s) = H (jω) =1.6
s2+0.5s+1.6

1.6

(1.6−ω2)+j(0.5⋅ω)
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Set A:   1 A
0.2  2

Set φ:   0 φ
-180

180

At ω =1, H(jω) = 1/(1.00 +
j2.00) = 0.45∠-63.4° = M∠θ.
Since the input can be
represented as 1∠0°,
The output is M·A∠(θ+φ) =
0.45∠-63.4°.

Magnitude Phase Time
Domain

H(jω) 0.45 -63.4° 0.45·cos(1·t
+ -63.4°)

Input 1 0° 1·cos(1·t +
0°)

Output 0.45 -63.4° 0.45·cos(1·t
+ -63.4°)

Directions for Use

Use the radio buttons to
choose a transfer function,
and the sliders to choose the
frequency, amplitude and
phase of the input (you can
also set frequency by
clicking and dragging in
either of the top two graphs.)

The paragraph below the
sliders goes through the
calculation of the numerical
value of the transfer function
at the chosen frequency, and
gives H(jω) in terms of
magnitude and phase. Note
that these are also shown on
the top two graphs by a dot.
To find the magnitude of the
output, simply multiply the
magnitude of the input (A) by
the magnitude of the transfer
function (M). The phase of
the output is sum of the input

h (φ) d th h f
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phase (φ) and the phase of
the transfer function (θ).

The bottom graph shows
input, Vin(t) in black, and
Vout(t) in magenta. The
period, T (maroon), is shown
from one upward zero-
crossing of the input function
to the next (shown by black
dots). The delay Td (green),
is shown from an upward
zero crossing of the input to
the next upward zero
crossing of the output (green
dot). The phase is negative
(since output lags input) and
equal to ‑Td/T·360°. So if the
delay was Td=T/4 (i.e., one
quarter of a period) the
phase shift would be -90°)

|H
(j
ω
)|

Magnitude of

0.450.450.45

0 1

0

1

∠
H
(j
ω
),

 °

Phase of H

-63-63 -63

0 1

-90

-45

0

Vin
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delay, Tdelay, Tdd delay, Td

period, Tperiod, Tperiod, T-1

0

1

2

Vin

V
in
(t
),

 V
o
ut
(t
)
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The Asymptotic Bode Diagram: Derivation of
Approximations
Overview  Freq Domain  Asymptotic plots  Making Plot  Examples  Drawing Tool
BodePlotGui  Rules Table  Printable

Skip ahead to interactive demos.

Contents
Introduction

A Magnitude Plot
A Phase Plot

A more generic derivation
Making a Bode Diagram

A Constant Term
Magnitude
Phase

Example: Bode Plot of Gain Term
Key Concept: Bode Plot of Gain Term

A Real Pole
Magnitude
Phase

Example: Real Pole
Example:  Repeated Real Pole
Key Concept: Bode Plot for Real Pole
Aside: a different formulation of the phase approximation

A Real Zero
Magnitude
Phase

Example: Real Zero
Key Concept: Bode Plot of Real Zero:

A Pole at the Origin
Magnitude
Phase

Example: Pole at Origin
Key Concept: Bode Plot for Pole at Origin

A Zero at the Origin
Example: Zero at Origin
Key Concept: Bode Plot for Zero at Origin

A Complex Conjugate Pair of Poles
Magnitude
Phase

Key Concept: Bode Plot for Complex Conjugate Poles
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Key Concept: Bode Plot for Complex Conjugate Poles
A Complex Conjugate Pair of Zeros

Example: Complex Conjugate Zero
Key Concept: Bode Plot of Complex Conjugate Zeros

Non-Minimum Phase Systems
Interactive Demos:

Interactive Demo: Bode Plot of Constant Term
Interactive Demo: Bode Plot of a Real Pole
Interactive Demo: Bode Plot of a Real zero
Interactive Demo: Bode Plot of a Pair of Complex Conjugate Poles
Interactive Demo: Bode Plot of a Pair of Complex Conjugate Zeros

Skip ahead to interactive demos.

Introduction
Given an arbitrary transfer function, such as

if you wanted to make a mode plot you could calculate the value of H(s) over a
range of frequencies (recall s=j·ω for a Bode plot), and plot them.  This is what a
computer would naturally do.  For example if you use MATLAB® and enter the
commands

>> mySys=tf(100*[1 1],[1 110 1000])
mySys =
     100 s + 100
  ------------------
  s^2 + 110 s + 1000
>> bode(mySys)

you get a plot like the one shown below.  The asymptotic solution is given elsewhere.

-40

-30

-20

-10

0

M
ag

ni
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de
 (d

B
)

90

Bode Diagram

H(s) =
100s + 100

s2 + 110s + 1000
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However, there are reasons to develop a method for sketching Bode diagrams
manually.  By drawing the plots by hand you develop an understanding about how the
locations of poles and zeros effect the shape of the plots.  With this knowledge you can
predict how a system behaves in the frequency domain by simply examining its
transfer function.  On the other hand, if you know the shape of transfer function that
you want, you can use your knowledge of Bode diagrams to generate the transfer
function.

The first task when drawing a Bode diagram by hand is to rewrite the transfer
function so that all the poles and zeros are written in the form (1+s/ω0).  The reasons
for this will become apparent when deriving the rules for a real pole.  A derivation will
be done using the transfer function from above, but it is also possible to do a more
generic derivation.  Let's rewrite the transfer function from above.

Now let's examine how we can easily draw the magnitude and phase of this function
when s=jω. 

First note that this expression is made up of four terms, a constant (0.1), a zero (at
s=-1), and two poles (at s=-10 and s=-100). We can rewrite the function (with s=jω) as
four individual phasors (i.e., magnitude and phase), each phasor is within a set of
square brackets to make them more easily distinguished from each other..

We will show (below) that drawing the magnitude and phase of each individual phasor
is fairly straightforward.  The difficulty lies in trying to draw the magnitude and phase of
the more complicated function, H(jω).  To start, we will write H(jω) as a single phasor:

H(s) = 100 = 100

= 0.1

s + 1

(s + 10)(s + 100)

1 + s/1

10 ⋅ (1 + s/10) ⋅ 100 ⋅ (1 + s/100)

1 + s/1

(1 + s/10)(1 + s/100)

H(jω) = 0.1

= [|0.1| ∠ (0.1)]

1 + jω/1

(1 + jω/10)(1 + jω/100)

[|1 + jω/1| ∠ (1 + jω/1)]

[|1 + jω/10| ∠ (1 + jω/10)] [|1 + jω/100| ∠ (1 + jω/100)]

H(jω) (|0 1| ) (∠ (0 1) + ∠ (1 + jω/1) ∠ (1 + jω/1
|1 + jω/1|
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Drawing the phase is fairly simple.  We can draw each phase term separately, and then
simply add (or subtract) them.  The magnitude term is not so straightforward because
the magnitude terms are multiplied, it would be much easier if they were added - then
we could draw each term on a graph and just add them. We can accomplish this by
usinga logarthmic scale (so multiplication and division become addition and
subtraction). Instead of a simple logarithm, we will use a deciBel (or dB) scale.

A Magnitude Plot
One way to transform multiplication into addition is by using the logarithm.  Instead

of using a simple logarithm, we will use a deciBel (named for Alexander Graham Bell).
(Note: Why the deciBel)  The relationship between a quantity, Q, and its deciBel
representation, X, is given by:

So if Q=100 then X=40; Q=0.01 gives X=-40; X=3 gives Q=1.41; and so on.

If we represent the magnitude of H(s) in deciBels several things happen.

The advantages of using deciBels (and of writing poles and zeros in the form (1+s/ω0))
are now revealed.  The fact that the deciBel is a logarithmic term transforms the
multiplications and divisions of the individual terms to additions and subtsractions. 
Another benefit is apparent in the last line that reveals just two types of terms, a
constant term and terms of the form 20·log10(|1+jω/ω0|).  Plotting the constant term is
trivial, however the other terms are not so straightforward.  These plots will be
discussed below.  However, once these plots are drawn for the individual terms, they
can simply be added together to get a plot for H(s).

H(jω) = (|0.1| ) (∠ (0.1) + ∠ (1 + jω/1) − ∠ (1 + jω/1

= |H(jω)| ∠H(jω)

|H(jω)| = |0.1|

∠H(jω) = ∠ (0.1) + ∠ (1 + jω/1) − ∠ (1 + jω/10) − ∠ (1 + jω/100)

|1 + jω/10| |1 + jω/100|

|1 + jω/1|

|1 + jω/10| |1 + jω/100|

X = 20 ⋅ log10 (Q)

|H(s)| = |0.1|

20 ⋅ log10 (|H(s)|) = 20 ⋅ log10 (|0.1| )

= 20 ⋅ log10 (|0.1|) + 20 ⋅ log10 (|1 + jω/1|) + 20 ⋅ log10 (
= 20 ⋅ log10 (|0.1|) + 20 ⋅ log10 (|1 + jω/1|) − 20 ⋅ log10 (|1 + j

|1 + jω/1|

|1 + jω/10| |1 + jω/100|

|1 + jω/1|

|1 + jω/10| |1 + jω/100|

|1 +
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A Phase Plot
If we look at the phase of the transfer function, we see much the same thing: The

phase plot is easy to draw if we take our lead from the magnitude plot.  First note that
the transfer function is made up of four terms.  If we want

Again there are just two types of terms, a constant term and terms of the form (1+jω/ω
0).  Plotting the constant term is trivial;  the other terms are discussed below.

A more generic derivation

The discussion above dealt with only a single transfer function.  Another derivation
that is more general, but a little more complicated mathematically is here.

 

Making a Bode Diagram
Following the discussion above, the way to make a Bode Diagram is to split the

function up into its constituent parts, plot the magnitude and phase of each part, and
then add them up.  The following gives a derivation of the plots for each type of
constituent part.  Examples, including rules for making the plots follow in the next
document, which is more of a "How to" description of Bode diagrams.

A Constant Term
Consider a constant term:

Magnitude

Clearly the magnitude is constant as ω varies. 

Phase

The phase is also constant.  If K is positive, the phase is 0° (or any even multiple of
180°, i.e., ±360°).  If K is negative the phase is -180°, or any odd multiple of 180°.  We
will use -180° because that is what MATLAB® uses.  Expressed in radians we can say
that if K is positive the phase is 0 radians, if K is negative the phase is -π radians.

Example: Bode Plot of Gain Term

∠H(s) = ∠ (0.1) + ∠ (1 + jω/1) − ∠ (1 + jω/10) − ∠ (1 + jω/100)

H(s) = H(jω) = K

|H(jω)| = |K|

H(s) = H (jω) = 15

|H (jω)| = |15| = 15 = 23.5 dB

∠H (jω) = ∠15 = 0∘
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The magnitude (in dB is calculated as
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Key Concept: Bode Plot of Gain Term
For a constant term, the magnitude plot is a straight line.
The phase plot is also a straight line, either at 0° (for a positive constant) or
±180° (for a negative constant).

Interactive Demo

A Real Pole

Consider a simple real pole : 

The frequency ω0 is called the break frequency, the corner frequency or the 3 dB
frequency (more on this last name later). The analysis given below assumes ω0 is
positive. For negative ω0 here.

Magnitude

The magnitude is given by

∠H (jω) = ∠15 = 0

20 ⋅ log10 (15) = 23.5

H (s) = , H (jω) =1
1+ s

ω0

1
1+j ω

ω0

|H (jω)| =
∣
∣
∣

∣
∣
∣

=
1

1 + j
ω

1

√ ( )
2
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Let's consider three cases for the value of the frequency, and determine the magnitude
in each case.:

Case 1) ω<<ω0.  This is the low frequency case with ω/ω0→0.  We can write an
approximation for the magnitude of the transfer function:

This low frequency approximation is shown in blue on the diagram below.

Case 2) ω>>ω0.  This is the high frequency case with ω/ω0→∞. We can write an
approximation for the magnitude of the transfer function:

, so

The high frequency approximation is at shown in green on the diagram below.  It is a
straight line with a slope of -20 dB/decade going through the break frequency at 0 dB
(if ω=ω0 the approximation simplifies to 0 dB; ω=10·ω0 gives an approximate gain of
0.1, or -20 dB and so on). That is, the approximation goes through 0 dB at ω=ω0, and
for every factor of 10 increase in frequency, the magnitude drops by 20 dB..

Case 3) ω=ω0. At the break frequency

This point is shown as a red circle on the diagram.

To draw a piecewise linear approximation, use the low frequency asymptote up to
the break frequency, and the high frequency asymptote thereafter.

∣ ∣

|H (jω)|dB = 20 ⋅ log10

⎛⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎠

1 + j ω0 √12 + ( )
2

ω
ω0

1

√1 + ( )
2

ω
ω0

√1 + ( )
2

≈ 1, and |H (jω)|dB ≈ 20 ⋅ log10 ( ) = 0
ω

ω0

1

1

√1 + ( )
2

≈ √( )
2

≈ω
ω0

ω
ω0

ω
ω0

|H (jω)|dB ≈ 20 ⋅ log10 ( )ω0

ω

|H (jω0)|dB = 20 ⋅ log10

⎛⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎠

= 20 ⋅ log10 ( ) ≈ −3 dB
1

√1 + ( )
2ω0

ω0

1

√2
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The resulting asymptotic approximation is shown highlighted in transparent magenta. 
The maximum error between the asymptotic approximation and the exact magnitude
function occurs at the break frequency and is approximately -3 dB.
 
Magnitude of a real pole: The piecewise linear asymptotic Bode plot for magnitude is
at 0 dB until the break frequency and then drops at 20 dB per decade as frequency
increases (i.e., the slope is -20 dB/decade).

Phase

The phase of a single real pole is given by is given by

Let us again consider three cases for the value of the frequency:

Case 1) ω<<ω0.  This is the low frequency case with ω/ω0→0.  At these frequencies
We can write an approximation for the phase of the transfer function

The low frequency approximation is shown in blue on the diagram below.

Case 2) ω>>ω0.  This is the high frequency case with ω/ω0→∞.  We can write an
approximation for the phase of the transfer function

The high frequency approximation is at shown in green on the diagram below.  It is a
horizontal line at -90°. 

∠H (jω) = ∠ ( ) = −∠(1 + j ) = − arctan( )1

1 + j ω
ω0

ω

ω0

ω

ω0

∠H (jω) ≈ − arctan(0) = 0∘ = 0 rad

∠H (jω) ≈ − arctan(∞) = −90∘ = − rad
π

2
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Case 3) ω=ω0.  The break frequency.  At this frequency

This point is shown as a red circle on the diagram.

A piecewise linear approximation is not as easy in this case because the high and
low frequency asymptotes don't intersect.  Instead we use a rule that follows the exact
function fairly closely, but is also somewhat arbitrary.  Its main advantage is that it is
easy to remember. 
 
Phase of a real pole: The piecewise linear asymptotic Bode plot for phase follows the
low frequency asymptote at 0° until one tenth the break frequency (0.1·ω0) then
decrease linearly to meet the high frequency asymptote at ten times the break
frequency (10·ω0). This line is shown above.  Note that there is no error at the break
frequency and about 5.7° of error at 0.1·ω0 and 10·ω0 the break frequency.

Example: Real Pole
The first example is a simple pole at 5 radians per second.  The asymptotic
approximation is magenta, the exact function is a dotted black line.

∠H (jω) = − arctan(1) = −45∘ = − rad
π

4

H(s) =
1

1 + s

5
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Example:  Repeated Real Pole

The second example shows a double pole at 30 radians per second.  Note that
the slope of the asymptote is -40 dB/decade and the phase goes from 0 to -180°.
The effect of repeating a pole is to double the slope of the magnitude to -40
dB/decade and the slope of the phase to -90°/decade.

H(s) =
1

(1 + )
2

s

30
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Key Concept: Bode Plot for Real Pole
For a simple real pole the piecewise linear asymptotic Bode plot for magnitude
is at 0 dB until the break frequency and then drops at 20 dB per decade (i.e.,

the slope is -20 dB/decade).   An nth order pole has a slope of -20·n
dB/decade.
The phase plot is at 0° until one tenth the break frequency and then drops
linearly to -90° at ten times the break frequency.  An nth order pole drops to
-90°·n.

The analysis given above assumes ω0 is positive. For negative ω0 here.
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Interactive Demo

Aside: a different formulation of the phase approximation

There is another approximation for phase that is occasionally used. The
approximation is developed by matching the slope of the actual phase term to
that of the approximation at ω=ω0. Using math similar to that given here (for the
underdamped case) it can be shown that by drawing a line starting at 0° at
ω=ω0/eπ/2=ω0/4.81 (or ω0·e-π/2) to -90° at ω=ω0·4.81 we get a line with the
same slope as the actual function at ω=ω0. The approximation described
previously is much more commonly used as is easier to remember as a line
drawn from 0° at ω0/5 to -90° at ω0·5, and easier to draw on semi-log paper. The
latter is shown on the diagram below.

Although this method is more accurate in the region around ω=ω0 there is a
larger maximum error (more than 10°) near ω0/5 and ω0·5 when compared to
the method described previously.

 

A Real Zero
The piecewise linear approximation for a zero is much like that for a pole  Consider

a simple zero: .

Magnitude

The development of the magnitude plot for a zero follows that for a pole. Refer to

H(s) = 1 + , H(jω) = 1 + js
ω0

ω
ω0
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The development of the magnitude plot for a zero follows that for a pole. Refer to
the previous section for details.  The magnitude of the zero is given by

Again, as with the case of the real pole, there are three cases:

1. At  low frequencies, ω<<ω0, the gain is approximately 1 (or 0 dB).
2. At high frequencies, ω>>ω0, the gain increases at 20 dB/decade and goes through the

break frequency at 0 dB.
3. At the break frequency, ω=ω0, the gain is about 3 dB.

Magnitude of a Real Zero: For a simple real zero the piecewise linear asymptotic
Bode plot for magnitude is at 0 dB until the break frequency and then increases at 20
dB per decade (i.e., the slope is +20 dB/decade).

Phase
The phase of a simple zero is given by:

The phase of a single real zero also has three cases (which can be derived similarly to
those for the real pole, given above):

1. At  low frequencies, ω<<ω0, the phase is approximately zero.
2. At high frequencies, ω>>ω0, the phase is +90°.
3. At the break frequency, ω=ω0, the phase is +45°.

Phase of a Real Zero: Follow the low frequency asymptote at 0° until one tenth the
break frequency (0.1 ω0) then increase linearly to meet the high frequency asymptote
at ten times the break frequency (10 ω0).

Example: Real Zero

This example shows a simple zero at 30 radians per second.  The asymptotic
approximation is magenta, the exact function is the dotted black line.

|H (jω)| =
∣
∣
∣
1 + j

∣
∣
∣

ω

ω0

∠H (jω) = ∠(1 + j ) = arctan( )ω

ω0

ω

ω0

H(s) = 1 +
s

30
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Key Concept: Bode Plot of Real Zero:
The plots for a real zero are like those for the real pole but mirrored about 0dB
or 0°.
For a simple real zero the piecewise linear asymptotic Bode plot for magnitude
is at 0 dB until the break frequency and then rises at +20 dB per decade (i.e.,
the slope is +20 dB/decade).   An n th order zero has a slope of +20·n
dB/decade.
The phase plot is at 0° until one tenth the break frequency and then rises

linearly to +90° at ten times the break frequency.  An nth order zero rises to
+90°·n.

The analysis given above assumes the ω0 is positive. For negative ω0 here.

Interactive Demo

A P l t th O i i
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A Pole at the Origin
A pole at the origin is easily drawn exactly.  Consider

Magnitude

The magnitude is given by

In this case there is no need for approximate functions and asymptotes, we can plot
the exact funtion. The function is represented by a straight line on a Bode plot with a
slope of -20 dB per decade and going through 0 dB at 1 rad/ sec.  It also goes through
20 dB at 0.1 rad/sec, -20 dB at 10 rad/sec... Since there are no parameters (i.e., ω0)
associated with this function, it is always drawn in exactly the same manner.

Magnitude of Pole at the Origin: Draw a line with a slope of -20 dB/decade that goes
through 0 dB at 1 rad/sec.

Phase

The phase of a simple zero is given by (H(jω) is a negative imaginary number for all
values of ω so the phase is always -90°):

Phase of pole at the origin: The phase for a pole at the origin is -90°.

Example: Pole at Origin

This example shows a simple pole at the origin.  The exact (dotted black line) is
the same as the approximation (magenta).

H (s) = , H (jω) = = −
1

s

1

jω

j

ω

|H (jω)| =
∣
∣
∣
−

∣
∣
∣

=

|H (jω)|dB = 20 ⋅ log10 ( ) = −20 ⋅ log10 (ω)

j

ω

1

ω

1

ω

∠H (jω) = ∠(− ) = −90∘j

ω
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Key Concept: Bode Plot for Pole at Origin
No interactive demo is provided because the plots are always drawn in the same way.

For a simple pole at the origin draw a straight line with a slope of -20 dB per
decade and going through 0 dB at 1 rad/ sec. 
The phase plot is at -90°. 
The magnitude of an nth order pole has a slope of -20·n dB/decade and a
constant phase of -90°·n.

A Zero at the Origin
A zero at the origin is just like a pole at the origin but the magnitude increases with

increasing ω, and the phase is +90° (i.e. simply mirror the graphs for the pole around
the origin around 0dB or 0°). 

Example: Zero at Origin
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This example shows a simple zero at the origin.  The exact (dotted black line) is
the same as the approximation (magenta).

Key Concept: Bode Plot for Zero at Origin
The plots for a zero at the origin are like those for the pole but mirrored about
0dB or 0°.
For a simple zero at the origin draw a straight line with a slope of +20 dB per
decade and going through 0 dB at 1 rad/ sec. 
The phase plot is at +90°. 
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The magnitude of an nth order zero has a slope of +20·n dB/decade and a
constant phase of +90°·n.

A Complex Conjugate Pair of Poles
The magnitude and phase plots of a complex conjugate (underdamped) pair of poles

is more complicated than those for a simple pole.  Consider the transfer function (with
0<ζ<1):

The analysis given below assumes the ζ is positive. For negative ζ see here.

Magnitude

The magnitude is given by

As before, let's consider three cases for the value of the frequency:

Case 1) ω<<ω0.  This is the low frequency case.  We can write an approximation for
the magnitude of the transfer function

The low frequency approximation is shown in red on the diagram below.

 

Case 2) ω>>ω0.  This is the high frequency case.  We can write an approximation
for the magnitude of the transfer function

H(s) = =
ω2

0

s2 + 2ζω0s + ω2
0

1

( )
2

+ 2ζ ( ) + 1s
ω0

s
ω0

|H(jω)| =

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
∣

=

|H(jω)|dB = −20 ⋅ log10
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2⎞⎟⎠
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−( )
2

+ j2ζ ( ) + 1ω
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|H(jω)|dB = −20 ⋅ log10 (1) = 0
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The high frequency approximation is at shown in green on the diagram below.  It is a
straight line with a slope of -40 dB/decade going through the break frequency at 0 dB. 
That is, for every factor of 10 increase in frequency, the magnitude drops by 40 dB.

 

Case 3) ω≈ω0.  It can be shown that a peak occurs in the magnitude plot near the
break frequency.  The derivation of the approximate amplitude and location of the peak
are given here.   We make the approximation that a peak exists only when

0<ζ<0.5

and that the peak occurs at ω0 with height 1/(2·ζ).

To draw a piecewise linear approximation, use the low frequency asymptote up to
the break frequency, and the high frequency asymptote thereafter.  If ζ<0.5, then draw
a peak of amplitude 1/(2·ζ)  Draw a smooth curve between the low and high frequency
asymptote that goes through the peak value.

As an example for the curve shown below ω0=10, ζ=0.1,

The peak will have an amplitude of 1/(2·ζ)=5.00 or 14 dB.

|H(jω)|dB = −20 ⋅ log10 (( )
2) = −40 ⋅ log10 ( )ω

ω0

ω

ω0

H(s) = = =
1

+ 0.02ζs + 1s2

100

1

( )
2

+ 0.2( ) + 1s

10
s

10

1

( )
2

+ 2ζ ( ) + 1s
ω0

s
ω0
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The resulting asymptotic approximation is shown as a black dotted line, the exact
response is a black solid line. 

Magnitude of Underdamped (Complex) poles: Draw a 0 dB at low frequencies until
the break frequency, ω0, and then drops with a slope of -40 dB/decade. If ζ<0.5 we
draw a peak of height at ω0, otherwise no peak is drawn.

Note: The actual height of the peak and its frequency are both slightly less than the approximations given
above. An in depth discussion of the magnitude and phase approximations (along with some alternate
approximations) are given here.

Phase

The phase of a complex conjugate pole is given by is given by

Let us again consider three cases for the value of the frequency:

Case 1) ω<<ω0.  This is the low frequency case.  At these frequencies We can write
an approximation for the phase of the transfer function

The low frequency approximation is shown in red on the diagram below.

 

Case 2) ω>>ω0.  This is the high frequency case.  We can write an approximation
for the phase of the transfer function

Note: this result makes use of the fact that the arctan function returns a result in quadrant 2 since the
imaginary part of H(j&omega;) is negative and the real part is positive.
The high frequency approximation is at shown in green on the diagram below.  It is a
straight line at -180°.

|H(jω0)| ≈ , |H(jω0)|dB ≈ −20 ⋅ log10 (2ζ)
1

2ζ

∠H(jω) = ∠

⎛⎜⎜⎝
⎞⎟⎟⎠ = −∠ (( )2

+ 2ζ( )+ 1) = −∠ (

= − arctan

⎛⎜⎜⎝
⎞⎟⎟⎠

1
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2

+ 2ζ ( ) + 1
jω

ω0

jω

ω0

jω

ω0

jω

ω0

2ζ ω
ω0

1 − ( )
2

ω
ω0

∠H (jω) ≈ − arctan( ) ≈ − arctan(0) = 0∘ = 0 rad
2ζω

ω0

∠H (jω) ≈ −180∘ = −π rad
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Case 3) ω=ω0.  The break frequency.  At this frequency

The asymptotic approximation is shown below for ω0=10, ζ=0.1, followed by an
explanation

A piecewise linear approximation is a bit more complicated in this case, and there
are no hard and fast rules for drawing it.  The most common way is to look up a graph
in a textbook with a chart that shows phase plots for many values of ζ.  Three
asymptotic approximations are given here.  We will use the approximation that
connects the the low frequency asymptote to the high frequency asymptote starting at

and ending at

∠H(jω0) = −90∘

H(s) = = =
1

+ 0.02ζs + 1s2

100

1
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2
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1

( )
2

+ 2ζ ( ) + 1s
ω0

s
ω0

ω = = ω0 ⋅ 10−ζω0

10ζ

ω = ω0 ⋅ 10ζ
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Since ζ=0.2 in this case this means that the phase starts at 0° and then breaks
downward at ω=ω0/10ζ=7.9 rad/sec. The phase reaches -180° at ω=ω0·10ζ=12.6
rad/sec.

As a practical matter If ζ<0.02, the approximation can be simply a vertical line at the
break frequency. One advantage of this approximation is that it is very easy to plot on
semilog paper. Since the number 10·ω0 moves up by a full decade from ω0, the

number 10ζ·ω0 will be a fraction ζ of a decade above ω0. For the example above the
corner frequencies for ζ=0.1 fall near ω0 one tenth of the way between ω0 and ω0/10
(at the lower break frequency) to one tenth of the way between ω0 and ω0·10 (at the
higher frequency).

Phase of Underdamped (Complex) Poles: Follow the low frequency asymptote at 0°
until

then decrease linearly to meet the high frequency asymptote at -180° at

Other magnitude and phase approximations (along with exact expressions) are given here.

Key Concept: Bode Plot for Complex Conjugate Poles
For the magnitude plot of complex conjugate poles draw a 0 dB at low
frequencies, go through a peak of height,

at the break frequency and then drop at 40 dB per decade (i.e., the slope is -40
dB/decade).  The high frequency asymptote goes through the break
frequency.  Note that in this approximation the peak only exists for

0 < ζ < 0.5

To draw the phase plot simply follow low frequency asymptote at 0° until

then decrease linearly to meet the high frequency asymptote at -180° at

If ζ<0.02, the approximation can be simply a vertical line at the break
frequency.

ω =
ω0

10ζ

ω = ω0 ⋅ 10ζ

|H(jω0)| ≈ , |H(jω0)|dB ≈ −20 ⋅ log10 (2ζ)
1

2ζ

ω = = ω0 ⋅ 10−ζω0

10ζ

ω = ω0 ⋅ 10ζ
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q y
Note that the shape of the graphs (magnitude peak height, steepness of phase
transition) are determined solely by ζ, and the frequency at which the
magnitude peak and phase transition occur are determined solely by ω0.

Note: Other magnitude and phase approximations (along with exact expressions) are given here.
The analysis given above assumes the ζ is positive. For negative ζ see here

Interactive Demo

A Complex Conjugate Pair of Zeros
Not surprisingly a complex pair of zeros yields results similar to that for a complex

pair of poles.  The magnitude and phase plots for the complex zero are the mirror
image (around 0dB for magnitude and around 0° for phase) of those for the complex
pole. Therefore, the magnitude has a dip instead of a peak, the magnitude increases
above the break frequency and the phase increases rather than decreasing. The
results will not be derived here, but closely follow those for complex poles.

Note: The analysis given below assumes the ζ is positive. For negative ζ see here

Example: Complex Conjugate Zero

The graph below corresponds to a complex conjugate zero with ω0=3, ζ=0.25

The dip in the magnitude plot will have a magnitude of 0.5 or -6 dB. The break
frequencies for the phase are at ω=ω0/10ζ=1.7 rad/sec and ω=ω0·10ζ=5.3 rad/sec.

H (s) = ( )2

+ 2ζ( )+ 1
s

ω0

s

ω0
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Key Concept: Bode Plot of Complex Conjugate Zeros
The plots for a complex conjugate pair of zeros are very much like those for the
poles but mirrored about 0dB or 0°.
For the magnitude plot of complex conjugate zeros draw a 0 dB at low
frequencies, go through a dip of magnitude:

at the break frequency and then rise at +40 dB per decade (i.e., the slope is
+40 dB/decade).  The high frequency asymptote goes through the break
frequency.  Note that the peak only exists for

0 < ζ < 0.5

To draw the phase plot simply follow low frequency asymptote at 0° until

then increase linearly to meet the high frequency asymptote at 180° at

Note that the shape of the graphs (magnitude peak height, steepness of phase
transition) are determined solely by ζ, and the frequency at which the
magnitude peak and phase transition occur are determined solely by ω0.

Note: Other magnitude and phase approximations (along with exact expressions) are given here.
The analysis given below assumes the ζ is positive. For negative ζ see here.

|H(jω0)| ≈ 2ζ, |H(jω0)|dB ≈ 20 ⋅ log10 (2ζ)

ω = = ω0 ⋅ 10−ζω0

10ζ

ω = ω0 ⋅ 10ζ
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Interactive Demo

Non-Minimum Phase Systems
All of the examples above are for minimum phase systems. These systems have

poles and zeros that do not have positive real parts. For example the term (s+2) is zero
when s=-2, so it has a negative real root. First order poles and zeros have negative
real roots if ω0 is positive. Second order poles and zeros have negative real roots if ζ is
positive. The magnitude plots for these systems remain unchanged, but the phase
plots are inverted. See here for discussion.

Interactive Demos:
Below you will find interactive demos that show how to draw the asymptotic
approximation for a constant, a first order pole and zero, and a second order
(underdamped) pole and zero. Note there is no demo for a pole or zero at the origin
because these are always drawn in exactly the same way; there are no variable
parameters (i.e., ω0 or ζ).

Interactive Demo: Bode Plot of Constant Term
This demonstration shows how the gain term affects

a Bode plot. To run the demonstration either enter the
value of K, or |K| expressed in dB, in one of the text
boxes below. If you enter |K| in dB, then the sign of K is
unchanged from its current value. You can also set |K|
and ∠K by either clicking and dragging the horizontal
lines on the graphs themselve. The magnitude of K must
be between 0.01 and 100 (-40dB and +40dB). The
phase of K (∠K) can only be 0° (for a positive value of K)
or ±180° (for negative K).
Enter a value for gain, K: 1.00  ,

or enter |K| expressed in dB: 0.00  dB.

K = 1.00 so the value of
KdB = 20·log10(|K|) = 20·log10(|1.00|) = 0.00.

Or, given that KdB = 0.00, |K| = 10Kdb/20 = 100.00/20 = 1.
The sign of K depends on phase, in this case K is
positive.and phase = 0°.
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Note that for the case of a constant term, the
approximate (magenta line) and exact (dotted black line)
representations of magnitude and phase are equal.

Interactive Demo: Bode Plot of a Real Pole
This demonstration shows how a first order pole

expressed as:

is displayed on a Bode plot. To change the value of ω0,
you can either change the value in the text box, below,
or drag the vertical line showing ω0 on the graphs to the
right. The exact values of magnitude and phase are
shown as black dotted lines and the asymptotic
approximations are shown with a thick magenta line.
The value of ω0 is constrained such that 0.1≤ω0≤10
rad/second.

Enter a value for ωo: 1.000

Asymptotic Magnitude:  The asymptotic magnitude
plot starts (at low frequencies) at 0 dB and stays at that
level until it gets to ω0. At that point the gain starts
dropping with a slope of -20 dB/decade.

Asymptotic Phase:  The asymptotic phase plot
starts (at low frequencies) at 0° and stays at that level
until it gets to 0.1·ω0 (0.1 rad/sec). At that point the
phase starts dropping at -45°/decade until it gets to -90°
at 10·ω0 (10  rad/sec), at which point it becomes
constant at -90° for high frequencies. Phase goes
through -45° at ω=ω0.
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Interactive Demo: Bode Plot of a Real zero
This demonstration shows how a first order zero

expressed as:

is displayed on a Bode plot. To change the value of ω0,
you can either change the value in the text box, below,
or drag the vertical line showing ω0 on the graphs to the
right. The exact values of magnitude and phase are
shown as black dotted lines and the asymptotic
approximations are shown with a thick magenta line.
The value of ω0 is constrained such that 0.1≤ω0≤10
rad/second.

Enter a value for ωo: 1.000

Asymptotic Magnitude:  The asymptotic magnitude
plot starts (at low frequencies) at 0 dB and stays at that
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Rules for Constructing Bode Diagrams
Overview  Freq Domain  Asymptotic plots  Making Plot  Examples  Drawing Tool
BodePlotGui  Rules Table  Printable

This document will discuss how to actually draw Bode diagrams.  It consists mostly
of examples.

Key Concept -
To draw Bode diagram there are four steps:

1. Rewrite the transfer function in proper form.
2. Separate the transfer function into its constituent parts.
3. Draw the Bode diagram for each part.
4. Draw the overall Bode diagram by adding up the results from part 3.

1. Rewrite the transfer function in proper form.
A transfer function is normally of the form:

As discussed in the previous document, we would like to rewrite this so the lowest
order term in the numerator and denominator are both unity.

Some examples will clarify:

Example 1

Note that the final result has the lowest (zero) order power of numerator and
denominator polynomial equal to unity.

Example 2

Note that in this example, the lowest power in the numerator was 1.
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Example 3

In this example the denominator was already factored.  In cases like this, each
factored term needs to have unity as the lowest order power of s (zero in this
case).

2.  Separate the transfer function into its constituent parts.
The next step is to split up the function into its constituent parts.  There are seven

types of parts:

1. A constant
2. Poles at the origin
3. Zeros at the origin
4. Real Poles
5. Real Zeros
6. Complex conjugate poles
7. Complex conjugate zeros

We can use the examples above to demonstrate again.

Example 1

This function has 
a constant of 6, 
a zero at s=-10, 
and complex conjugate poles at the roots of s2+3s+50.  

The complex conjugate poles are at s=-1.5 ± j6.9 (where j=sqrt(-1)).  A more
common (and useful for our purposes) way to express this is to use the standard
notation for a second order polynomial

In this case
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Example 2

This function has 
a constant of 3, 
a zero at the origin, 

and complex conjugate poles at the roots of s2+3s+50, in other words

  

Example 3

This function has 
a constant of 2, 
a zero at s=-10, and 
poles at s=-3 and s=-50.

3. Draw the Bode diagram for each part.
The rules for drawing the Bode diagram for each part are summarized on a separate

page.  Examples of each are given later.

4. Draw the overall Bode diagram by adding up the results
from step 3.

After the individual terms are drawn, it is a simple matter to add them together.  See
examples, below.

Examples: Draw Bode Diagrams for the following transfer functions
These examples are compiled on the next page.

Example 1
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p
A simple pole

 

Full Solution

Example 2
Multiple poles and zeros

Full Solution

Example 3
A pole at the origin and poles and zeros

Full Solution

Example 4
Repeated poles, a zero at the origin, and a negative constant

Full Solution

Example 5
Complex conjugate poles

Full Solution

Example 6
A complicated function
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Several examples of the construction of Bode plots are included here; click on the

transfer function in the table below to jump to that example.
Examples  (Click on Transfer Function)

1

(a real
pole)

2

(real poles and
zeros)

3

(pole at
origin)

4

(repeated real poles,
negative constant)

5

(complex conj.
poles)

6

(multiple
poles at
origin,

complex
conj zeros)

 

References
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The table below summarizes what to do for each type of term in a Bode Plot.  This is
also available as a Word Document or PDF.

The table assumes ω0>0. If ω0<0, magnitude is unchanged, but phase is reversed.

 
Term Magnitude Phase

Constant: K 20log10(|K|) K>0:  0°       
K<0:   ±180°

Pole at Origin

(Integrator) 
-20 dB/decade passing

through 0 dB at ω=1 -90°

Zero at Origin

(Differentiator) 

+20 dB/decade passing
through 0 dB at ω=1

(Mirror image, around x
axis,of Integrator)

+90°
(Mirror image, around x

axis, of Integrator about )

Real Pole 1. Draw low frequency
asymptote at 0 dB.

2. Draw high frequency
asymptote at -20
dB/decade.

3. Connect lines at ω0.

1. Draw low frequency
asymptote at 0°

2. Draw high frequency
asymptote at -90°

3. Connect with a
straight line from
0.1·ω0 to 10·ω0

Real Zero
1. Draw low frequency

asymptote at 0 dB.
2. Draw high frequency

asymptote at +20
dB/decade.

3. Connect lines at ω0.

(Mirror image, around x-
axis, of Real Pole)

1. Draw low frequency
asymptote at 0°

2. Draw high frequency
asymptote at +90°

3. Connect with a
straight line from
0.1·ω0 to 10·ω0

(Mirror image, around x-
axis, of Real Pole about 0°)

Underdamped Poles

(Complex conjugate
poles)

1. Draw low frequency
asymptote at 0 dB.

2. Draw high frequency
asymptote at -40
dB/decade.

3. Connect lines at ω0.
4. If ζ<0.5, then draw

peak at ω0 with
amplitude
   
|H(jω0)|=-20·log10(2ζ),
else don't draw peak

1. Draw low frequency
asymptote at 0°

2. Draw high frequency
asymptote at -180°

3. Connect with straight
line from

You can also look in a

1
s

s

1

+ 1s
ω0

+ 1
s

ω0

0 < ζ < 1

1

( )
2

+ 2ζ ( ) + 1s
ω0

s
ω0

ω =  to ω0 ⋅ 10ζ
ω0

10ζ
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p
(it is very small). textbook for examples

Underdamped Zeros

(Complex conjugate
zeros)

1. Draw low frequency
asymptote at 0 dB.

2. Draw high frequency
asymptote at +40
dB/decade.

3. Connect lines at ω0.
4. If ζ<0.5, then draw

peak at ω0 with
amplitude
    
|H(jω0)|=+20·log10(2ζ),
else don't draw peak
(it is very small).

(Mirror image, around x-
axis, of Underdamped Pole)

1. Draw low frequency
asymptote at 0°

2. Draw high frequency
asymptote at +180°

3. Connect with straight
line from

You can also look in a
textbook for examples.

(Mirror image, around x-
axis, of Underdamped

Pole)

For multiple order poles and zeros, simply multiply the slope of the magnitude plot

( )2

+ 2ζ( )+ 1

0 < ζ < 1

s

ω0

s

ω0

ω =  to ω0 ⋅ 10ζ
ω0

10ζ
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BodePlotGui: A Tool for Generating
Asymptotic Bode Diagrams
Overview  Freq Domain  Asymptotic plots  Making Plot  Examples  Drawing Tool
BodePlotGui  Rules Table  Printable

BodePlotGui is a graphical user interface written in the MATLAB® programming
language.  It takes a transfer function and splits it into its constituent elements, then
draws the piecewise linear asymptotic approximation for each element.  It is hoped that
the BodePlotGui program will be a versatile program for teaching and learning the
construction of Bode diagrams from piecewise linear approximations. 

Files for the program are found here.

Note: the MATLAB GUI doesn't display well on all devices (some elements of the
GUI may not show up). If you have this problem, simply run the MATLAB command
"guide" and open the fileBodePlotGui.fig. You can edit the size and layout of the GUI
for your machine. Save it, and then rerun the BodePlotGui.m file.

I have stopped working on BodePlotGui and have developed a similar tool in
JavaScript to make it more accessible (see the "Drawing Tool" tab, above). While
MATLAB is extremely powerful, it is also very expensive.

Use of program.

A Simple Example.

Consider the transfer function:

This function has three terms to be considered when constructing a Bode
diagram, a constant (100), a pole at ω=10 rad/sec, and a zero at the origin. The
following MATLAB® commands begin execution of the GUI:

>>MySys=tf(1000*[1 0],[1 10]);   %define Xfer function 
>>BodePlotGui(MySys)        %Invoke GUI

The GUI generates a window as shown below.
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 Starting in the upper left and going counterclockwise, the windows show:

1. The magnitude plot, both the piecewise linear approximation for all three terms as well
as the asymptotic plot for the complete transfer function and the exact Bode diagram for
magnitude. Also shown is a zero reference line.

2. The phase plot.
3. A list of the systems in the user workspace.
4. Several checkboxes that let the user format the image.  In particular there is a check-

box that determines whether or not to display the asymptotic plot for the complete
transfer function; sometimes it gets in the way of seeing the other plots, so you may
want to hide it.

5. The legend identifying individual terms on the plot.
6. A box that shows elements excluded from the plot. This box is empty in this display

because the diagram displays all three elements of the transfer function.
7. A 'Legend' box that shows elements displayed in the plot.
8. Several check-boxes that allow the user to display how the plots are displayed
9. Also in the upper left is a "Help" tab.

Also shown in the upper right hand corner is the transfer function, H(s).

Modifying what is displayed
The function displayed can be manipulated term by term to illustrate the effect of

each term. For example, the zero at the origin can be excluded simply by clicking on it
in the lower left hand box The figure below shows the result
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in the lower left hand box. The figure below shows the result.

Note that the zero at the origin is no longer included in the plot.  Each term can be
likewise included or excluded by simply clicking on it.

The next plot shows the plot modified to have thicker lines, a grid, phase in radians
and with the asymptotic plot of the complete transfer function.  In the previous graph,
the phase of the asymptotic plot obscured that of the real pole; this is an example when
it might be convenient not to show the asymptotic approximation.
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Underdamped terms

Underdamped poles (and zeros) present a difficulty because they cause a peak (dip)
in the magnitude plot.  The program show this with a simple circle showing the peak
height.  For example the transfer function

yields the output shown below.  The peak due to the underdamped pole is clearly
shown.
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A more complicated example

The example below is more complicated.  It shows underdamped terms,
repeated poles, and a pole at the origin.
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Make your own Bode plot paper
The code for BodePaper.m is available at https://github.com/echeever/BodePlotGui

When making Bode plots one needs two pieces of semi-logarithmic paper, one for
the magnitude plot and one for the phase.  The program described here, BodePaper.m,
can be used to make paper.   Download it and save it so that MatLab can find it (from
the Matlab menu you can go to File→Set Path and include the directory where you
stored the BodePaper.m file.) . There is also a fine in the repository called
BodeMagPaper.m that creates only a magnitude plot.

The syntax for calling is given by the function's help file.

>> help BodePaper

BodePaper is Matlab code to generate graph paper for Bode 
two semilog graphs for making Bode plots. The top plot is 
units on the vertical axis is set to dB. The bottom plot s
units on the phase plot can be radians or degrees, at the 
user. The default is degrees.

The correct calling syntax is:
BodePaper(om_lo, om_hi, dB_lo, dB_hi, ph_lo, ph_hi, UseRad
    om_lo the low end of the frequency scale. This can be 
        rad/sec or Hz. No units are displayed on the graph
    om_hi the high end of the frequency scale.
    dB_lo the bottom end of the dB scale.
    dB_hi the top end of the dB scale.
    ph_lo the bottom end of the phase scale.
    ph_hi the top end of the phase scale.
    UseRad an optional argument. If this argument is non-z
        on the phase plot are radians. If this argument is
        or set to zero, the units are degrees.

To make paper that goes from 0.1 Hz to 100 Hz, with the magnitude scale going
from -60 to 40 dB and the phase from -180 to 90 degrees, the function call would be

>> BodePaper(0.1,100,-60,40,-180,90)

and the paper looks like:
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To change the units on phase the function call would be:

 BodePaper(0.1,100,-60,40,-pi,pi/2,1)

and the paper now looks like this:
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