
Bindel, Fall 2009 Matrix Computations (CS 6210)

Week 11: Friday, Nov 6

Logistics

1. Two course advertisements:

(a) CS 5220: Applications of Parallel Computers (Bindel)

(b) Math 6140: Differential Games, Optimal Control, Front Propaga-
tion, and Dynamic Programming (Vladimirsky)

Double-shift QR steps

Last time, we discussed the Wilkinson strategy of choosing as a shift one of
the roots of the trailing 2-by-2 submatrix of A(k) (the one closest to the final
entry). We also noted that if we want to convert to real Schur form, the
Wilkinson shift has the distinct disadvantage that it might launch us into
the complex plane. The Francis shift strategy is to simultaneously apply a
complex conjugate pair of shifts, essentially computing two steps together:

Q(k)R(k) = (A(k−1) − σkI)(A(k−1) − σ̄kI)

= (A(k−1))2 − 2<(σk)A(k−1) + |σk|2I
A(k) = (Q(k))∗A(k−1)(Q(k)).

When the Wilkinson shift is real, we let σk be the same as the Wilkinson
shift; when the Wilkinson strategy leads to a conjugate pair of possible shifts,
we use both, maintaining efficiency by doing the steps implicitly. Let’s now
make this implicit magic a little more explicit by building code for an implicit
double-shift QR step.

Our first step will be to construct the polynomial associated with the
Francis double-shift. In the case where the trailing 2-by-2 submatrix (or 2-
by-2 block Rayleigh quotient, if one prefers) has a complex pair of eigenvalues,
we just use its characteristic polynomial. Otherwise, we use the polynomial
associated with two steps with a Wilkinson shift.

function [b,c] = lec29qrpoly(H)

% Compute b, c s.t. z^2 + b*z + c = (z-sigma)(z-conj(sigma))

% where sigma is the Wilkinson double shift

http://www.cs.cornell.edu/~bindel/cs5220-s10
http://www.math.cornell.edu/~vlad/math6140
http://www.math.cornell.edu/~vlad/math6140

Bindel, Fall 2009 Matrix Computations (CS 6210)

% Get shifts via trailing submatrix

HH = H(end-1:end,end-1:end);

trHH = HH(1,1)+HH(2,2);

detHH = HH(1,1)*HH(2,2)-HH(1,2)*HH(2,1);

if trHH^2 > 4*detHH % Real eigenvalues

% Use the one closer to H(n,n)

lHH(1) = (trHH + sqrt(trHH^2-4*detHH))/2;

lHH(2) = (trHH - sqrt(trHH^2-4*detHH))/2;

if abs(lHH(1)-H(end,end)) < abs(lHH(2)-H(end,end))

lHH(2) = lHH(1);

else

lHH(1) = lHH(2);

end

% z^2 + bz + c = (z-sigma_1)(z-sigma_2)

b = -lHH(1)-lHH(2);

c = lHH(1)*lHH(2);

else

% In the complex case, we want the char poly for HH

b = -trHH;

c = detHH;

end

The code lec29qrpoly gives us coefficients bk and ck for a quadratic
function sk(z) = z2 + bkz + ck. We now want to compute

Q(k)R(k) = sk(A(k−1)) = (A(k−1))2 + bkA
(k−1) + ckI

A(k) = (Q(k))∗A(k−1)(Q(k)).

The trick is to realize that all the iterates A(k) are Hessenberg, and the
Hessenberg form for a matrix is usually unique (up to signs). Therefore, we

Bindel, Fall 2009 Matrix Computations (CS 6210)

compute the first Householder transformation W in a QR factorization of
sk(A(k) explicitly. The first column of Q(k) is the same as the first column of
W . The remaining columns of Q(k) can be determined by the requirement
that A(k) is in Hessenberg form. We compute them implicitly by applying the
usual Hessenberg reduction algorithm to B = WA(k−1)W , taking advantage
of the fact that B has special structure to do O(n2) work. Each step of the
reduction moves a “bulge” down the diagonal by one.

function [H] = lec29qrstep(H)

% Implicit QR step using a Francis double shift

% (there should really be some re-scalings for floating point)

% Compute double-shift poly and initial column of H^2 + b*H + c*I

[b,c] = lec29qrpoly(H);

C1 = H(1:3,1:2)*H(1:2,1);

C1(1:2) = C1(1:2) + b*H(1:2,1);

C1(1) = C1(1) + c;

% Apply a similarity associated with the first step of QR on C

v = house(C1);

H(1:3,:) = H(1:3,:)-2*v*(v’*H(1:3,:));

H(:,1:3) = H(:,1:3)-(H(:,1:3)*(2*v))*v’;

% Do "bulge chasing" to return to Hessenberg form

% (compare to lec27hess).

%

n = length(H);

for j = 1:n-2

k = min(j+3,n);

% -- Find W = I-2vv’ to put zeros below H(j+1,j), H := WHW’

v = house(H(j+1:k,j));

H(j+1:k,:) = H(j+1:k,:)-2*v*(v’*H(j+1:k,:));

H(:,j+1:k) = H(:,j+1:k)-(H(:,j+1:k)*(2*v))*v’;

H(k,j) = 0;

end

Bindel, Fall 2009 Matrix Computations (CS 6210)

In the LAPACK codes, the Francis double-shift strategy is mixed with
some “exceptional shifts” that occur every few iterations. These exceptional
shifts serve to keep the algorithm from getting stuck in certain pathological
situations (e.g. a cyclic permutation matrix).

Deflation

A sequence of implicit doubly-shifted QR steps with the Francis shift will
usually give us rapid convergence of a trailing 1-by-1 or 2-by-2 submatrix to
a block of a Schur factorization. As this happens, the trailing row (or two
rows) becomes very close to zero. When the values in these rows are close
enough to zero, we deflate by setting them equal to zero. This corresponds
to a small perturbation to the original problem.

The following code converts a Hessenberg matrix to a block upper trian-
gular matrix with 1-by-1 and 2-by-2 blocks. To reduce this matrix further to
real Schur form, we would need to make an additional pass to further reduce
any 2-by-2 block with real eigenvalues into a pair of 1-by-1 blocks.

function [H] = lec29qr(H)

n = length(H);

tol = norm(H,’fro’) * 1e-8;

k = 0;

while n > 2

if abs(H(n,n-1)) < tol

fprintf(’At step %d: Deflated 1-by-1 block\n’, k);

H(n,n-1) = 0;

n = n-1;

elseif abs(H(n-1,n-2)) < tol

fprintf(’At step %d: Deflated 2-by-2 block\n’, k);

H(n-1,n-2) = 0;

n = n-2;

else

H(1:n,1:n) = lec29qrstep(H(1:n,1:n));

k = k+1;

end

end

Bindel, Fall 2009 Matrix Computations (CS 6210)

More careful deflation criteria are usually used in practice; see the book.
This criterion at least corresponds to small normwise perturbations to the
original problem, but it may result in less accurate estimates of small eigen-
values than we could obtain with a more aggressive criterion.

Stability of the method

Each step of the implicitly double-shifted QR iteration changes the matrix
only with orthogonal transformations (which are perfectly conditioned) or
deflations. Hence, the QR iteration is backward stable. However, this is
not the same as saying that the method is forward stable! For forward
stability, the conditioning of the eigenvalues is critical, and multiple (or nearly
multiple) eigenvalues of multiplicity m usually inherit an O(ε1/m) error, as
we saw in our earlier discussion of sensitivity.

The intermediate computations in the QR code as given above are prone
to scaling problems, and so the basic QR codes in LAPACK (dlahqr) uses
a more careful construction of a scaled copy of the first Householder trans-
formation.

The state of the art

The current state of the art in QR iterations is the LAPACK code dgehqr

written by Ralph Byers, which is based on an award-winning set of papers by
Braman, Byers, and Mathias. This code uses the following general strategy:

1. Run the basic QR iteration to find the eigenvalues of a trailing b × b
submatrix. Apply the transformations to the whole matrix, resulting
in a “spike” to the left of the triangularized portion.

2. Look for converged eigenvalues in the trailing submatrix by analyzing
the “spike” to find small elements. Deflate any eigenvalues found (and
there may be several). This is called aggressive early deflation.

3. Use several of the remaining eigenvalues from the Rayleigh quotient
block as a sequence of successive shifts. These can be run simultane-
ously by chasing a sequence of closely-spaced bulges down the main
diagonal. The similarity transformations associated are applied in a
blocky way to get good cache performance.

